AUTOMOTIVE INDUSTRY STANDARDS

CODE OF PRACTICE FOR BUS BODY DESIGN AND APPROVAL
(First Revision)

PRINTED BY
THE AUTOMOTIVE RESEARCH ASSOCIATION OF INDIA
P.B. NO. 832, PUNE 411 004
ON BEHALF OF
AUTOMOTIVE INDUSTRY STANDARDS COMMITTEE
UNDER
CENTRAL MOTOR VEHICLE RULES – TECHNICAL STANDING COMMITTEE
SET-UP BY
MINISTRY OF SHIPPING, ROAD TRANSPORT & HIGHWAYS
(DEPARTMENT OF ROAD TRANSPORT & HIGHWAYS)
GOVERNMENT OF INDIA
August 2008

I
INTRODUCTION

Our society’s increasing requirements for mobility with simultaneously growing environmental sensitivity is a big challenge for the traffic policy makers and the transport corporations including private fleet operators. Consequently, it is also indispensable for the manufacturers of light and heavy passenger vehicles and the body builders to adapt to the ecologically motivated requirements, which becomes more and more important without compromising on basic minimum requirements of safety and comfort. The CMVR - Technical Standing Committee under the then Chairman Shri B. Bhanot, addressed the problem areas and the whole exercise was aimed towards standardizing the essential aspects involved in the construction of the bus body considering the minimum requirements of Safety and Comfort for a passenger.

Former Ministry of Surface Transport now called Ministry of Shipping, Road Transport & Highways, requested the CMVR-Technical Standing Committee to frame requisite guidelines on Standardization of the Bus Body. A Sub-Committee was formed under Mr. A. S. Lakra, the then Director-Engineering, of ASRTU to look into various aspects concerning Bus Body Design issue by the CMVR Committee. Series of meetings were held to deliberate on the issues and other sub-groups were set-up to deliberate and conclude on the relevant and critical technical issues. The Sub-Committee completed its task and the subject was finally discussed in the 10th CMVR-Technical Standing Committee meeting held on the 5th and 6th of July, 2001. The finalised “Code of Practice for Bus Body Design and Approval” was submitted to the Ministry for further necessary action. The standard AIS-052 was published in September 2001.

It was noticed that the OE vehicle manufacturers sell their products in the form of drive away chassis and the body design and building is being done by way side body builders who employ poor design, poor quality products, spurious materials and parts, with no uniformity in the construction, resulting in large amounts of fatal accidents. The existing bus body structures are hardly design optimal and safe. The cabin and seats have cramped designs which do not provide safety and comfort to the driver. Body designs offer extreme heat, vibration, noise, poor comfort and protection. Wood is being used in the construction of the body to a large extent. Of late some reputed body builders have brought in improved bus designs in the market but still a lot has to be done.
This exercise of formulation of the requisite guidelines was done for the first time in the country by involving various agencies including representatives of Transport Commissioner’s offices and attempts were made to standardize certain required features concerned with the construction of a bus body. The Committee had looked into various aspects and after detailed deliberations of the issues the Code of Practice was formulated. The group had addressed the following critical areas besides other general aspects.

1. Categorization of buses based on the seating capacity and on minimum comfort levels and the type of operation.
2. Various safety related features like entry / exit door, emergency exits, window frames, their locations, dimensions and designs.
3. Standardization of the floor level height, gangways and dimensions of the foot steps.
4. Dimension of seats, seating layout, lighting and illumination.
5. Driver’s workplace requirements.
6. Methodology for the calculation of the standing and seating capacity for the passengers.
8. Stability and strength evaluations of the bus body structure, seat anchorages etc., including the roll over test for the full body.

The development of this Code was possible because of the commendable support and contributions made by the members of the Sub-Committee from ASRTU, ARAI, SIAM, CIRT, ACMA, representatives of others under the chairmanship of Mr. A. S. Lakra, the then Director - Engineering, ASRTU under the valuable direction and guidance of Shri B. Bhanot, the then Chairman-CMVR-TSC.

Further, the CMVR-Technical Standing Committee in its 21st meeting held on June 07, 2007 at New Delhi, realized the need for revision of the Bus Code and requested Shri Shrikant R. Marathe, Chairman-AISC to hold a separate sub-committee meeting with the stake holders for appropriate revision of the code. The specific concerns raised by the Vehicle industry, State Transport Corporations, and other stake holders were addressed in the meeting. Brihanmumbai Electric Supply and Transport (BEST), Metropolitan Transport Corporation (MTC), ARAI, CIRT, VRDE and SIAM participated in the discussions. The sub-committee discussed various issues raised by the stake holders, during the meeting held on July 30, 2007.

Further, as desired by the Chairman CMVR-TSC, during the special meeting on the Bus Code on March 08, 2008, at MOSRT&H, AISC had a separate meeting on April 04, 2008 at ARAI, specifically to discuss comments offered by Delhi Transport Corporation (DTC) and SIAM for concluding the recommendations.
There have been considerable changes in the ECE Regulation over a period of 7 years and the same had been considered for this revision exercise. The separate ECE Regulation 36 and 52 which was basically for the large capacity buses and small capacity buses have been put together to form ECE Regulation 107, which is common for all buses and coaches. The changes proposed by the stakeholders were examined in light of the revised Regulation ECE R 107, with a view to bring in more clarity on certain issues and to take care of editorial correction. The Midi and Mini buses which were addressed separately in our Bus Code have also been rationalized.

The changes have been duly incorporated in the code and has been released as AIS-052 (Revision-1) - Code of Practice for Bus Body Design and Approval. This revised Code had the formal vetting of the CMVR-Technical Standing Committee, during its 24th meeting held on July 14, 2008.

AISC and CMVR-TSC sincerely thank all the stakeholders for their effective contribution in the exercise of formulation of this code and revision of the same, which was co-ordinated by ARAI.
CODE OF PRACTICE FOR
BUS BODY DESIGN AND APPROVAL

CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>Introduction</td>
<td>II</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Scope & Definitions</td>
<td>1/122</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>General Requirements of Bus Body Design</td>
<td>11/122</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Technical & Safety Requirements</td>
<td>54/122</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Lighting & Illumination</td>
<td>69/122</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Electrical Equipment & Wiring</td>
<td>73/122</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Test Methods</td>
<td>76/122</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Type Approval & COP Procedure</td>
<td>94/122</td>
</tr>
<tr>
<td>Annexure-1</td>
<td>Information on Technical Specifications</td>
<td>97/122</td>
</tr>
<tr>
<td>Appendix-1</td>
<td>Body Structure and Nomenclature</td>
<td>112/122</td>
</tr>
<tr>
<td>Appendix-2</td>
<td>Extract of Notification No. GSR 221(E) dated 28th March, 2001</td>
<td>113/122</td>
</tr>
<tr>
<td>Appendix-3</td>
<td>Major Bus Specifications / Features</td>
<td>114/122</td>
</tr>
<tr>
<td>Appendix-4</td>
<td>List of participants of the Sub-committee meetings</td>
<td>119/122</td>
</tr>
<tr>
<td>Appendix-5</td>
<td>List of participants for the meeting to discuss Revision of AIS-052</td>
<td>121/122</td>
</tr>
</tbody>
</table>
1.0 SCOPE

The provisions of this code are applicable to buses with a seating capacity of 13 passengers or above excluding driver.

The requirements of this code also apply to the following vehicles except in respect of those provisions* which are not compatible with the intended use and function of these vehicles:

A. High Capacity Buses like
 i. Double Decker Bus
 ii. Articulated Bus
 iii. Double Deck Articulated Bus

B. Special Purpose Buses like-
 i. Sleeper Coach
 ii. School Bus
 iii. Tourist Bus
 iv. Prison vehicles
 v. Vehicles specially designed for the carriage of injured or sick persons (Ambulances)
 vi. Off road vehicles
 vii. Vehicle Designed for use by Police, Security and Armed Forces

* Provisions to be defined and notified separately.

1.1 Definitions - For the purpose of this code:

1.1.1 ‘Vehicle’ means a four or more wheeled motor vehicle designed and constructed for the purpose of transportation of 13 passengers or above excluding driver.

1.1.1.1 ‘Articulated Vehicle’ means a vehicle which consists of two or more rigid sections which articulate relative to each other; the passenger compartments of each section is interconnected by an articulate section allowing free movement of passengers between them; the rigid sections are permanently connected and can only be separated by an operation involving facilities which are normally found in a work shop.
1.1.2 ‘Bus Body’ means the portion of a bus that encloses the bus’s occupant space, exclusive of the bumpers, the chassis frame any structure forward of the forward most point of the windshield mounting.

1.1.3 ‘Ladder Type Chassis’ means the chassis frame of the vehicle and is the main load bearing element. The general construction of ladder frame consists of side and cross members. The side and cross members are connected with special gusset sections or pressed cross member sections. The junctions are riveted, bolted or welded.

1.1.4 ‘Monocoque Construction’ means a type of bus body structure where the body and base frame are joined together either by welding or by other methods to form an integral structure. These structural elements consist of pressed grid type of support elements and rectangular sections.

1.1.5 ‘Type I’ Vehicles are the medium and high capacity vehicles designed and constructed for urban and sub urban / city transport with area for standing passengers, to allow movement of passengers associated with frequent stops and the low capacity vehicles which are designed and constructed for urban and sub urban / city transport exclusively for carrying seated passengers. The low capacity vehicles in this type can carry standee passengers if they meet provisions for low capacity standee buses.

1.1.6 ‘Type II’ Vehicles are those designed and constructed for inter-urban/inter-city transport without specified area for standing passengers, but can carry standing passengers over short distance in the gangway; unless otherwise prohibited by the State Transport Department.

1.1.7 ‘Type III’ Vehicles are those designed and constructed for long distance passenger transport, exclusively designed for comfort of seated passengers and not intended for carrying standing passengers.

1.1.8 ‘Type IV’ Vehicles are those designed and constructed for special purpose use such as the following: -
(1) School Bus: means vehicles designed and constructed specially for schools, college, and other educational Institutions.
(2) Sleeper Coaches: means vehicles designed and constructed specially berth to accommodate sleeping passengers.
(3) Tourist Bus: means vehicles designed and constructed for the purpose of transportation of passengers as tourists and may be classified in any one Type of comfort levels.

1.1.9 Low Capacity Vehicles include –
(1) Micro Bus: Seating capacity of maximum 12 passengers plus driver.
(2) Mini Bus: Seating capacity between 13 to 22 passengers plus driver.
1.1.10 **Medium Capacity** Vehicles include -

(1) Midi Bus*: Seating capacity between 23 to 34 passengers plus driver.

(2) Standard Bus: Seating capacity between 35 to 70 passengers plus driver.

* Provisions of this code are not applicable to Micro Buses.

1.1.11 **High Capacity** Vehicles are the vehicles with seating capacity more than 70 passengers plus driver and include vehicles such as Single Deck Articulated Bus, Single Deck Double Articulated Bus, Double Deck Bus, Double Deck Articulated Bus and Single Deck Tandem Axle Bus etc.

Note: For the purpose of defining the seating capacity, a standard 3x2 layout with a seat spacing of 686 mm and seat width of 400 mm per passenger has been considered to arrive at permissible maximum seats. The computation takes into consideration areas not available for seating passengers, such as driver compartment, engine compartment, stepwell gangway etc.)

1.1.12 **Non Deluxe Bus** (NDX) means bus designed for basic minimum comfort level.

1.1.13 **Semi Deluxe Bus** (SDX) means a bus designed for a slightly higher comfort level and with provision for ergonomically designed seats.

1.1.14 **Deluxe Bus** (DLX) means a bus designed for a high comfort level and individual seats and adjustable seat backs, improved ventilation and pleasing interiors.

1.1.15 **A.C. Deluxe Bus** (ACX) means a **Deluxe Bus** which is air conditioned.

1.1.16 ‘Door’ means a sub system of a bus body that permits boarding and alighting of passengers. Door may or may not be with panel (hinged / sliding) for closing it.

1.1.16.1 ‘Service Door’ means a door intended for use by passengers in the normal circumstances.

1.1.16.2 ‘Double Door’ means a door affording two, or the equivalent of two, access passages.

1.1.16.3 ‘Sliding Door’ means a door, which can be opened or closed only by sliding it along one or more rectilinear or approximately rectilinear rails.

1.1.16.4 ‘Power operated Service Door’ means a service door which is exclusively operated by energy other than muscular energy and the opening and closing of which is controlled by driver or jointly by driver and crew member.

Note: In case of Indian requirement conductor (crew member) control may be necessary to operate the doors.
1.1.16.5 ‘Automatically Operated Door’ means a power operated service door which can be opened by a control, operated by a passenger, after activation of the control by the driver and which will close automatically.

1.1.16.6 ‘Emergency Door’ means a door intended for use as an exit by passengers in an emergency only.

1.1.17 ‘Exit’ means a service door or emergency exit.

1.1.17.1 ‘Emergency Exit’ means an emergency door, emergency window or escape hatch.

1.1.18 ‘Window’ means an aperture in the sides of the bus to let in light and air. The window need not necessarily be glazed.

1.1.18.1 ‘Emergency Window’ means a window, intended for use as an exit by passengers in an emergency only.

1.1.18.2 ‘Double Window’ means an emergency window which, when divided into two or more parts by imaginary vertical line or (plane), exhibit two parts respectively, each of which complies as to dimensions and access with requirement applicable to a normal emergency window.

1.1.19 ‘Escape Hatch’ means a roof opening intended for use as an exit by passengers in an emergency.

1.1.20 ‘Floor or Deck’ means that part of the body work whose upper surface supports standee passengers, the feet of seated passengers and driver, and support the seat mountings.

1.1.21 ‘Gangway’ means the space providing access to passengers from any seat or row of seats to another seat or to any access passage; it does not include:

- The space required to accommodate the feet of the seated passengers;
- The space above the surface of any step or staircase; or
- Any space which affords access to one seat or row of seats

1.1.22 ‘Access Passage’ means the passage through a doorway to a gangway.

1.1.23 ‘Passenger’ means a person other than the driver.
1.1.24 ‘Passenger Compartment’ means the space intended for passenger use excluding any space by fixed appliances or luggage/storage compartments.

1.1.25 ‘Driver Compartment’ means the space intended for the driver’s exclusive use and contains driver seat, steering wheel, controls, instruments and other devices necessary for driving or operating the vehicle.

1.1.26 ‘Unladen kerb Mass’ means the weight of the vehicle in running order, unoccupied and unladen but complete with fuel, coolant, lubricant, tools and spare wheel.

1.1.27 ‘Gross Vehicle Weight’ means technically permissible maximum weight declared by the manufacturer of the vehicle and certified by the test agency.

1.1.28 ‘Seat’ means a structure complete with trim, capable of accommodating one or more adult person.

1.1.28.1 ‘Individual seat’ means a seat designed and constructed for the accommodation of one passenger.

1.1.28.2 ‘Double seat’ means a seat designed and constructed for the accommodation of two passengers side by side. Two seats side by side and having no interconnection shall be regarded as two individual seats.

1.1.28.3 ‘Continuous seat’ means a seat designed and constructed for the accommodation of two or more passengers side by side.

1.1.28.4 ‘Driver seat’ means the front seat intended for the seating of the driver.

1.1.28.5 ‘Co-driver seat’ means the front seat, on the opposite side of the driver seat, intended for seating the co-driver / conductor / helper / cleaner.

1.1.28.6 ‘Passenger seat’ means the seat intended for seating passengers.

1.1.29 ‘Seat cushion’ means the part of the seat which is arranged almost horizontally and designed to support a seated passenger.

1.1.30 ‘Seat-back’ means the part of the seat that is almost vertical, designed to support the passenger’s back, shoulders and, possibly his head.

1.1.31 ‘Adjustment system’ means the device by which the seat or its parts can be adjusted to a position suited to the seated occupant.

1.1.32 ‘Displacement system’ means a device enabling the seat or one of its parts to be displaced laterally or longitudinally without a fixed intermediate position of the seat or one of its parts, to facilitate access by passengers.
1.1.33 ‘Locking system’ means a device ensuring that the seat and its parts are maintained in the position of use.

1.1.34 ‘Anchorage’ means a part of the floor or of the body of a vehicle to which a seat is fixed.

1.1.35 ‘Seat Frame’ means structural portion of the seat assembly. The seat frame may be constructed with springs attached to the structural frame or may support padding.

1.1.36 ‘Padding’ means soft and resilient material installed between the seat frame sub assembly and trim covering.

1.1.37 ‘Trim’ means a part of the seat assembly providing an envelope for the seat frame and the padding. Also provides surface, appearance, comfort and interior styling.

1.1.38 ‘Attachment fittings’ means bolts or other components used to attach the seat to the vehicle.

1.1.39 ‘Reference plane’ means the plane passing through the points of contact of the heels of the manikin, used for the determination of the H point and the actual angle of torso for the seating position in motor vehicles.

1.1.40 ‘Reference height’ means the height of the top of the seat above the reference plane.

1.1.41 ‘Reference zone’ means the space between two vertical longitudinal planes, 400 mm apart and symmetrical with respect to the H-point, and defined by rotation from vertical to horizontal of the head-form apparatus whose dimensions from the pivotal point of the hip to the top of the head is continuously adjustable between 736 mm and 840 mm.

1.1.42 ‘Seat spacing’ means, the distance between the front of a seat squab and the back of the seat squab of the seat preceding it, measured horizontally at a height of 620 mm above the floor.

1.1.43 ‘Transverse Plane’ means a vertical plane perpendicular to the median longitudinal plane of the vehicle.

1.1.44 ‘Longitudinal Plane’ means a plane parallel to the median longitudinal plane of the vehicle.

1.1.45 ‘Head Restraint’ means a device whose purpose is to limit the rearward displacement of an adult occupant’s head in relation to his torso in order to reduce the danger of injury to the cervical vertebrae in the event of an accident.
1.1.45.1 ‘Integrated Head Restraint’ means a head restraint which can only be detached from the seat or the vehicle structure by the use of tools or by partial or complete removal of the seat covering meet the present definition.

1.1.45.2 ‘Detachable Head Restraint’ means a head restraint consisting of a component separable from the seat, designed for insertion and positive retention in the seat-back structure.

1.1.45.3 ‘Separate Head Restraint’ means a head restraint consisting of a component separate from the seat, designed for insertion and/or positive retention in the structure of the vehicle.

1.1.46 ‘H-Point’ means a pivot center of the torso and thigh on the two or three dimensional device used in defining and measuring vehicle seating accommodation.

1.1.46.1 ‘Design H-Point’ is located on a drawing by the H-point on the two dimensional drafting template placed in any designated seating position.

1.1.47 ‘R-point’ or ‘Seating Reference Point’ means the manufacturer’s design H-point which establishes the rearmost normal driving or riding position of each designated seating position as stipulated by the manufacturer and which accounts for all modes of adjustments (horizontal, vertical and tilt) that are available for the seat; has co-ordinates established with respect to the designed vehicle structure; simulates the position of the pivot centre of the human torso and thigh; and is the reference point employed to position a two-dimensional template.

1.1.48 ‘Torso Reference Line’ means a straight line passing through the joint between the leg and the pelvis and the theoretical joint between the neck and thorax of the manikin.

1.1.49 ‘Cab lamp or Courtesy lamp’ are lamps situated above the head of the driver lighting up the dash board area and inside of the cabin. This is meant for operation while the bus is stationary. The cab lamp shall be capable of being operated only for a momentary duration while the bus is in motion.

1.1.50 ‘Exit lamps’ are lamps to light up the running boards. They are to light up automatically when the doors for exit or entry are opened. In the absence of closable doors at the entry and exit point, the lights are to be permanently lit during night operations of the bus.

1.1.51 ‘Locker lamps’ are lamps to light up the inside of the locker when the door to the locker is opened, illuminating interior of the locker.
1.1.52 ‘Electrical distribution panel lamp’ are lamps meant to light up electrical distribution panel when the cover to the distribution centre is opened for checking and maintenance purposes.

1.1.53 ‘Instrument lighting’ are lights that light up individual instruments. These can be connected to a single control through a rheostat. By varying the control, the strength of the instrument lighting can be regulated by the driver while driving in the dark to avoid glare from instrument lighting.

1.1.54 ‘Control unit lamps’ are similar to instrument lighting. However, these lamps illuminate individual controls discreetly to assist driver for identifying the controls.

1.1.55 ‘Passengers area lamps’ are lamps to light up the passenger area and assist passenger in identifying objects and reading the printed matter.

1.1.56 Components of Body structure (Ref. Appendix 1)

1.1.56.1 ‘Cross Bearers’ are structural members mounted on the chassis frame through ‘U’ Bolts or outrigger brackets. The cross bearers transmit the body load to the chassis and also withstand the forces induced during the normal operation of the vehicle.

1.1.56.2 ‘Vertical pillars’ (body pillar) are structural members that support the roof structure and are connected to the cross bearers through gussets. The Vertical pillars transmit load to the cross bearers and also withstand the forces induced during the normal operation of the vehicle.

1.1.56.3 ‘Roof Arch Members’ are structural members that connect the vertical pillars and form a body section. In the event of a rollover, the body section absorbs the impact and provides survival protection in the passenger compartment. Gussets are also provided to improve the rigidity and strength of the body section.

1.1.56.4 ‘Cant rails’ are structural members that connect two body sections above the window section.

1.1.56.5 ‘Waist Rails’ are structural members that connect two body sections below the window section.

1.1.56.6 ‘Sole Bars’ are structural members that connect two body sections at the floor plane.

1.1.56.7 ‘Seat Rails’ are structural members running along the lateral walls and provide support for seat mounting.

1.1.56.8 ‘Floor Runners’ are structural members that connect cross bearers.
1.1.56.9 ‘Roof Runners’ structural members that connect roof arch members.

1.1.56.10 ‘Out-Rigger Brackets’ are attachments that provide connection between the cross bearers and the chassis frame.

1.1.56.11 ‘“U” Bolts’ are fasteners used for fastening the cross bearers to the chassis frame.

1.1.56.12 ‘A Pillar’ means any roof support forward of seating reference point.

1.1.56.13 **Front Outrigger Members** are provided to transfer load of Body structure members. These are fixed to the chassis side members. “A” pillars are supported on outrigger members such that the roof load is transferred to the chassis load bearing members. Further in the event of a collision the energy is absorbed by the pillars and the out riggers and minimise the impact energy transmitted to the driver and passenger compartment. (Protection against frontal collision)

1.1.57 'Bituminous Coating' means Coal tar or asphalt based coating.

1.1.58 'Chromated Parts' mean parts treated with chromic acid to improve their corrosion resistance.

1.1.59 'Conversion coating' means an adherent reaction product layer on a metal surface with a suitable chemical; such as an iron phosphate.

1.1.60 'Corrosion means' the deterioration of a material, usually a metal, because of a reaction with its environment.

1.1.61 'Contact Corrosion/Bimetallic corrosion' means galvanic corrosion between two dissimilar metals.

1.1.62 'Electro-Coating' means a method of coating a metal deploying high voltages between an anode and a cathode in an electrolyte.

1.1.63 'Electrogalvanised-steel' means steel sheet produced by continuously electroplating zinc onto the steel surface.

1.1.64 'Metalising' means a process of coating a surface with a layer of metal by spraying, vacuum deposition, dipping, plasma jet, cementation etc.

1.1.65 'Organic coating' means primarily paints applied to metallic or other substrates to provide corrosion protection and to improve aesthetic characteristics of the material.
1.1.66 'Phosphate Coating' means protective coating formed by reaction of a metallic substrate with an acid phosphate containing solution. The primary role of the phospating coating is to enhance the adhesion of the primer (electro coat or others) to the metal. Phosphate coatings are typically Zn-Fe, Zn-Ni, or Zn-Ni-Mn phosphates.

1.1.67 'Precoated material' means a material that has been coated prior to the manufacture of the ware or part.

1.1.68 'Pretreatment' means a surface treatment prior to the process of interest (e.g., phosphating prior to painting).

1.1.69 'Prime Coat' means the first coat of paint applied to inhibit corrosion and/or improve adhesion of the next coat.

1.1.70 'Primer' means the paint applied as the prime coat, formulated to have good bonding and wetting characteristic, and may or may not contain inhibited pigments.

1.1.71 'Rust' means corrosion product mainly consisting of hydrated iron oxides and applied only to iron and ferrous products.

1.1.72 'Rust proofing' means application of coatings intended to prevent or greatly reduce the formation of rust on steel parts.

1.1.73 'Sealers' means product applied to joints or seams to prevent the entry of moisture or contaminants or to enhance adhesion or corrosion protection.
CHAPTER : 2

GENERAL REQUIREMENTS OF BUS BODY DESIGN

2.0 CATEGORISATION OF BUSES

Keeping in view the varying requirements of applications of buses and those of commuters, all buses are categorised into four Types, namely, Type I, Type II, Type III and Type IV, as defined in Chapter 1.

Each of these types of buses is further categorised as Non-Deluxe (NDX), Semi Deluxe (SDX), Deluxe (DLX) and A. C. Deluxe (ACX), on the basis of comfort level required by different categories of commuters.

Buses are also categorised as Low Capacity, Medium Capacity and High Capacity buses to cater to the traffic demand pattern, as also the frequency of the traffic. A chart depicting the categorisation of buses is given in Annexure I.

The dimensional requirements for various types / categories of buses are detailed in the following paragraphs. The corresponding technical requirements are given in Chapter 3 of this Code.

2.1 Overall Dimensions

2.1.1 Overall dimensions of the bus shall comply with the provisions laid down in Rule 93 of Central Motor Vehicle Rules, 1989, as amended from time to time. (The Committee’s recommendation, notified by MoRT&H vide notification No. GSR 221(E), dated 28th March 2001 on dimensions of buses is enclosed as Appendix 2)

2.2 Internal Dimensions

2.2.1 Entry / Exits

2.2.1.1 Service Doors

2.2.1.1.1 The service door(s) shall be situated on the side of the vehicle that is nearer to the side of the road corresponding to the direction of traffic.

2.2.1.1.2 The minimum width of the service door shall be at least 650 mm. This dimension shall be reduced by 100mm when the measurement is made at the level of the hand holds.

2.2.1.1.3 In case of buses where minimum two service doors are required, the front door shall be positioned either ahead of the front axle or behind the front axle, but necessarily in the forward half of the vehicle.
2.2.1.1.4 A double service door shall be counted as two doors.

2.2.1.1.5 Each rigid section of an articulated bus shall be treated as a separate vehicle for the purpose of calculating the minimum number of exits to be provided.

2.2.1.1.6 Number of Service Doors

2.2.1.1.6.1 The minimum number of service doors or apertures shall be as follows, except in case of Mini & Midi buses which shall have at least one service door or aperture:

<table>
<thead>
<tr>
<th>Category</th>
<th>NDX</th>
<th>SDX</th>
<th>DLX</th>
<th>ACX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Type II</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Type III</td>
<td>N.A.</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.1.1.6.2 Minimum number of service doors for Mini and Midi buses shall be one.

2.2.1.1.6.3 In case of type I (DLX, ACX), type II and type III provision of second exit shall be optional.

2.2.1.1.7 Minimum dimensions of Service Doors

2.2.1.1.7.1 Minimum dimensions of service doors / apertures for buses other than Mini & Midi buses, shall be as follows -

<table>
<thead>
<tr>
<th>Category</th>
<th>Height Min. (mm)</th>
<th>Width min. (mm) (As Applicable)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front</td>
<td>Rear</td>
</tr>
<tr>
<td>Type I</td>
<td>1800</td>
<td>650 mm for single door and 1200 mm for double door</td>
</tr>
<tr>
<td></td>
<td>SDX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>1650</td>
<td>650 mm for single door and 1200 mm for double door</td>
</tr>
<tr>
<td></td>
<td>SDX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td></td>
</tr>
<tr>
<td>Type III</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td></td>
</tr>
</tbody>
</table>

** This dimension shall be reduced by 100 mm when the measurement is made at the level of the hand holds.

Door / aperture between two axles in case of rear engine buses of type I (except ACX) category.
2.2.1.7.2 Minimum dimensions of service doors for the Midi and Mini buses shall be as follows -

<table>
<thead>
<tr>
<th></th>
<th>Midi & Mini Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standee</td>
</tr>
<tr>
<td>Height (mm)*</td>
<td>1650</td>
</tr>
<tr>
<td>Width (mm)**</td>
<td>650</td>
</tr>
</tbody>
</table>

* The dimension shall be reduced by 100mm for Mini buses with Gross Vehicle Weight (GVW) less than 3.5 tons.

** This dimension shall be reduced by 100 mm when the measurement is made at the level of the hand holds.

2.2.2 Window

2.2.2.1 The window panes shall be of sliding type for all buses except ACX buses. However, in ACX buses the provision for adequate ventilation in case of A.C. failure shall be made.

2.2.2.2 The minimum width of the window aperture (clear vision zone) shall be 550 mm.

2.2.2.3 The minimum height of the sliding part of the window aperture (clear vision zone) shall be 550 mm for standard bus and 450 mm for Midi and Mini buses. However, this dimension is not applicable to ACX buses, where sliding window panes are provided for ventilation in case of A.C. failure.

2.2.2.4 In Type I NDX & SDX and Type II NDX buses other than Mini buses, the minimum height of the window aperture (clear vision zone) shall be 1000 mm and the upper edge of the window aperture shall be at least at the height of 1700 mm from the floor. However, the height of the upper edge of the window aperture from the floor shall be at least 1500 mm in the rear saloon area for rear engine buses.

2.2.2.5 In case of Midi and Mini NDX buses, the minimum height of the window aperture (clear vision zone) shall be 450 mm and the upper edge of the window aperture shall be at least at the height of 1300 mm from the floor.

2.2.2.6 The window aperture (clear vision zone) in case of ACX buses shall be at least 550 mm wide and 700 mm high.

2.2.2.7 However, these dimensions shall not be applicable to the following –

(i) Front & Rear corner side windows.
(ii) Any other window which forms a part of emergency exit.
(iii) Fixed for the purpose of maintaining the minimum window pitch in relation to the overall vehicle dimension.
(iv) The window(s) above route and destination box fitted at left side near the entrance, at eye level.

2.2.3 Guard Rail

2.2.3.1 All buses except ACX buses shall be provided with minimum of two guard rails. However, this requirement shall not be applicable for buses whose Gross Vehicle Weight (GVW) is less than 3.5 tons.

2.2.3.2 The first guard rail shall be provided at a height of 75 mm from the lower window sill.

2.2.3.3 The distance between two guard rails shall be 75 to 100 mm.

2.2.4 Emergency Exits

2.2.4.1 In case of buses other than Mini & Midi, at least one emergency exit shall be situated on the opposite side of the service door.

2.2.4.2 In case of Mini & Midi Buses, the emergency exit shall be situated either on the opposite side of the service door or at the rear of the vehicle.

2.2.4.3 In case of Midi and Mini Buses where the emergency exit is provided on the opposite side of the service door, it shall meet the dimensional requirements given in para 2.2.4.13.

2.2.4.4 In case of Midi and Mini Buses where the emergency exit is provided at the rear of the vehicle, its minimum dimensions shall be 1250 mm x 550 mm for emergency door exit (refer Cl. 2.2.4.13) or 4000 cm² for emergency window exit (refer Cl. 2.2.4.15). The emergency door width may be reduced to 300 mm in cases where intruding wheel arches so require, providing that the width of 550 mm is respected at the minimum height of 400 mm above the lowest part of the door aperture and the upper corners may be reduced with round-offs, with a radius of not more than 150 mm.

2.2.4.5 In case of more than one emergency exit, one of the emergency exit shall be situated in the front half of the vehicle, opposite to the service door and the second emergency exit shall be either on the rear half or at the rear side of the bus.

2.2.4.6 Windows of the vehicle may be considered as emergency exits provided they meet the minimum size given in para 2.2.4.15 and comply with technical requirements defined in para 3.4.5.2.
2.2.4.7 Each rigid section of an articulated bus shall be considered as a separate unit and the connection between the two sections is not considered as an emergency exit.

2.2.4.8 A door provided in the rear face and not designated as a service door shall meet the requirements of emergency exit.

2.2.4.9 If the driver compartment does not provide access to the passenger compartment by means of a passageway, the following condition shall be met:

- The driver compartment shall have two exits, which shall not be on the same lateral wall; and one such exit is a window, it shall comply with the requirements set in para 2.2.4.15 and comply with the technical requirements defined in para 3.4.5.2.
- Where seats are permitted along side the driver for passenger seat, both exits shall be doors. The driver door shall be accepted as emergency exit for the passengers and the second exit provided shall be accepted as the emergency exit for the driver, provided the driver controls, steering wheel, engine housing etc. do not constitute a serious obstruction.

2.2.4.10 If the driver compartment and seats adjacent to it are accessible from the main passenger compartment by means of a passage, no additional external exit mentioned in para 2.2.4.9 is required.

2.2.4.11 The fitment of any welded structure / frame restricting the opening of any of the emergency exit, from inside or outside the vehicle, shall not be permitted.

2.2.4.12 The minimum number of Emergency doors/ Exits or apertures in case of other than Mini and Midi bus shall be as follows:

<table>
<thead>
<tr>
<th></th>
<th>NDX</th>
<th>SDX</th>
<th>DLX</th>
<th>ACX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Type II</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Type III</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2.2.4.12.1 In case the driver door is easily accessible from the passenger compartment, the driver door may be considered as an emergency door.

2.2.4.12.2 There shall be a minimum of one Emergency doors/ Exits or apertures in case of a Mini & Midi Bus.
2.2.4.13 Minimum dimensions of the emergency exits shall be as below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Height (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>1250</td>
<td>550</td>
</tr>
<tr>
<td>Type II</td>
<td>1250</td>
<td>550</td>
</tr>
<tr>
<td>Type III</td>
<td>1250</td>
<td>550</td>
</tr>
</tbody>
</table>

2.2.4.14 For the purpose of this requirement, service doors equipped with power operated system shall not be deemed as emergency exits unless they can be readily opened by hand, once the control specified in technical requirements para 3.4.4.9.1 has been actuated if necessary.

2.2.4.15 Minimum requirements of the emergency windows shall be as below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Area (cm²)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>4000</td>
<td>It shall be possible to inscribe in this area a 50 cm high and 70 cm wide rectangle.</td>
</tr>
<tr>
<td>Type II</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Type III</td>
<td>4000</td>
<td></td>
</tr>
</tbody>
</table>

2.2.4.16 Escape hatches additional to the emergency doors and windows, may be fitted in the roof for all category of vehicles.

2.2.4.16.1 Where escape hatches are provided the position shall be as specified below:

<table>
<thead>
<tr>
<th>Number of Hatches</th>
<th>Position of the Hatches</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>Shall fall in the middle segment of the roof, when the entire roof is considered as three segments.</td>
</tr>
<tr>
<td>Two or more</td>
<td>At a pitch of 2 m. when measured between the nearest edges of the aperture and in a line Parallel with the longitudinal axis</td>
</tr>
</tbody>
</table>

2.2.4.16.2 Minimum requirements of the escape hatches shall be as below:

<table>
<thead>
<tr>
<th>Area (cm²)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>4000</td>
</tr>
<tr>
<td>Type II</td>
<td>4000</td>
</tr>
<tr>
<td>Type III</td>
<td>4000</td>
</tr>
</tbody>
</table>
2.2.5 Steps

2.2.5.1 Dimensions of Steps in mm shall be as given in the table below:

<table>
<thead>
<tr>
<th>Classes</th>
<th>I</th>
<th>II, III</th>
</tr>
</thead>
<tbody>
<tr>
<td>First step from ground ‘D’</td>
<td>Max. height (mm)</td>
<td>340 (1)</td>
</tr>
<tr>
<td></td>
<td>Min. depth (mm)</td>
<td>300 */</td>
</tr>
<tr>
<td>Other steps ‘E’</td>
<td>Max. height (mm)</td>
<td>250 (3)</td>
</tr>
<tr>
<td></td>
<td>Min. height (mm)</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Min. depth (mm)</td>
<td>200</td>
</tr>
</tbody>
</table>

Ref Fig. 1

*/ 230 mm for vehicles having a capacity not exceeding 22 passengers.
(1) 700 mm in the case of an emergency door.
1500 mm in the case of an emergency door in the upper deck of a double deck vehicle.
(2) 400 mm in the case of Type I bus with solely mechanical suspension and 430 mm in the case of Type II and Type III vehicles with solely mechanical suspension.
(3) 300 mm in the case of steps at a door behind the rearmost axle.
(4) 250 mm in gangways for vehicles having a capacity not exceeding 22 passengers.
(5) For at least one service door; 400 mm for other service doors.

Note: 1. At a double doorway the steps in each half of the access passage shall be treated separately.
2. E need not be the same for each step.

2.2.5.2 The height of the first step in relation to the ground shall be measured with the vehicle on level ground, unladen, the tyre pressure being as specified by the manufacturer corresponding to maximum technical mass.

2.2.5.3 The height of a step shall be measured at the centre of its width.

2.2.5.4 Where there is more than one step, each step may extend into the area of the vertical projection of the next step by 100 mm and the projection over the tread below shall leave a free surface at least 200 mm with all steps edges designed to minimise the risk of tripping and being in contrasting colour or colours. A yellow colour band of 50 mm width shall be provided on all steps to assist visually impaired people.

2.2.5.5 A rectangular template of 400 mm x 200 mm when placed over the step shall have a contact area of atleast 95 %, In case of a double doorway each half of the door shall fulfil this requirement.
2.2.5.6 All steps shall be provided with anti skid surface (Aluminium chequered plate/ grooved vinyl sheet or any non-slip coating). The anti skid surface shall meet the requirements specified in AIS standard as and when notified.

2.2.6 Access to Service Doors

2.2.6.1 The free space extending inward into the vehicle from the side wall in which the door is mounted shall permit the passage of vertical template 20 mm thick, 400 mm wide and 700 mm in height above the floor, having a second panel 550 mm wide superimposed symmetrically above it. The height of the second panel being as prescribed for the relevant type of vehicle. (Refer Figure 2).

2.2.6.2 The height of the second panel be as specified below.

<table>
<thead>
<tr>
<th>Dimensions in mm</th>
<th>Other than Midi bus and Mini Bus</th>
<th>Midi bus and Mini Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standee</td>
<td>Non Standee</td>
</tr>
<tr>
<td>Width of upper panel</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Height of upper panel (A) **</td>
<td>Type I 1100</td>
<td>1100*</td>
</tr>
<tr>
<td></td>
<td>Type II 950</td>
<td>950/950*</td>
</tr>
<tr>
<td></td>
<td>Type III 850</td>
<td>700/950*</td>
</tr>
<tr>
<td>Total height of dual panel **</td>
<td>Type I 1800</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>Type II 1650</td>
<td>1650</td>
</tr>
<tr>
<td></td>
<td>Type III 1550</td>
<td>1550</td>
</tr>
</tbody>
</table>

* Alternate trapezoidal section having a height of 500mm, forming the transition between the width of the upper and the lower panel, may be used. In this case, the total height of the rectangle section and this trapezoidal section of the upper panel shall be 1100 mm for all types of vehicles other than Midi and Mini buses, and 950 mm for the Midi and Mini buses.

**These dimensions shall be reduced by 100 mm for Mini Buses whose Gross Vehicle Weight is less than 3.5 tons.

Ref. Fig. 2

2.2.7 Floor Height

2.2.7.1 The height of the floor measured in relation to the ground shall be measured with the vehicle unladen.

2.2.7.2 For purposes of determining the floor height, at least 35% of the area available for the standing passengers (or in its forward section in the case of articulated vehicles, or in its lower deck in case of double decker vehicles) form a single area without steps reached through at least one service door.
2.2.7.3 The floor height shall be measured at any one of the service doors of the vehicle in unladen condition. (reference point to be specified by the manufacturer)

2.2.8 Gangways

2.2.8.1 The gangway for all the vehicle categories shall be designed and constructed to allow free passage of a gauging device consisting of two coaxial cylinders with an inverted truncated cone interposed between them. The minimum dimensions (in mm) of the device shall be as mentioned below:

<table>
<thead>
<tr>
<th></th>
<th>Other than Midi and Mini Bus</th>
<th>Midi and Mini Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type I</td>
<td>Type II</td>
</tr>
<tr>
<td>Diameter of the lower cylinder (A)</td>
<td>450</td>
<td>350</td>
</tr>
<tr>
<td>Height of lower cylinder</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Diameter of the upper cylinder (C)</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Height of upper cylinder (B)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Overall Internal height (H)</td>
<td>1900</td>
<td>1900</td>
</tr>
</tbody>
</table>

Ref. Fig. 3

2.2.8.2 On rear engine vehicles the height of the upper cylinder may be reduced by 150 mm in any part of gangway to -

- the rear of a transverse vertical plane situated 1500 mm forward of the centre line of the rear axle, and

- the rear of a transverse plane situated at the rear edge of the rearmost service door, if there are more than one service door.

- the front of a transverse vertical plane situated at the centre line of the front axle.

2.2.8.3 On Articulated buses the gauging devices defined in para 2.2.8.1, shall be able to pass unobstructed through the articulate section. No part of the soft covering including parts of bellow, shall project into the gangway.
2.2.8.4 Folding seats allowing passengers to sit in the passage shall not be permitted. Folding seats in the passage shall be allowed in the case of Mini buses whose Gross vehicle Weight (GVW) is less than 3.5 tons.

Note: In case of differences between the specifications stated above and that of AIS-023, the specifications of AIS-023 shall be considered as final and standing.

2.2.8.5 Steps may be fitted in the gangway, provided -

- Height of the step is not less than 150 mm and not greater than 250 mm;
- Depth of the step is not less than 230 mm;
- Width of the step is same as the width of the gangway, at the top of the step.

2.2.8.6 Gangways and access passages shall be covered/lined with an anti-slip material. The anti slip material shall meet the requirement of the relevant standard as and when notified.

2.2.8.7 The **slope of the gangway** with vehicle in the unladen condition and in the horizontal surface shall not exceed:

- 6% in case of Type I, Type II and Type III buses.
- 8% in case of zone rearward of a transverse vertical plane situated 1500 mm forward of the centre line of the rear axle, may be permitted.

2.2.9 **Hand Rails and Hand Holds**

2.2.9.1 Handrails and handholds shall meet the dimensional and strength requirements as per AIS-046, as amended from time to time, capable of withstanding the force induced by sway of passenger (standard weight of 68 kg per passenger).

2.2.9.2 They shall be designed and installed as to present no risk of injury to passengers. (There shall be no relative movement between the rail and mounting bracket)

2.2.9.3 Hand rails and hand holds section dimensions shall be such that the passengers can grasp them easily and firmly. Hand rail length shall be at least 100 mm to accommodate a hand.

2.2.9.4 Diameter of the section shall not be less than 20 mm and not more than 45 mm. Or this requirement for the diameter of the section shall be in accordance with AIS-046, as amended from time to time, for the specifications of hand holds.
2.2.9.5 In the case of handrails in access passage in Type II or Type III or non standee mini buses and in case of handrails on doors and seats, a minimum sectional dimension of 15 mm shall be permitted provided that one other dimension is of at least 25 mm. The corners shall be rounded and devoid of sharp edges.

2.2.9.6 The clearance between a hand rail or a handhold and adjacent part of the vehicle body or lateral wall shall be at least 40 mm. However in case of a handrail on a door or seat a minimum clearance of 35 mm shall be permitted. The lateral clearance shall be 150 mm minimum.

2.2.9.7 Handrails and/or handholds shall be provided with sufficient number for each point of the floor Area intended, for the standing passengers. This requirement shall be deemed to be full filled if at least two handrails and/or handholds can be reached is inside the envelope inscribed by the moving arm of the testing device. The dimensions of the testing device are appended in Fig. 4. The testing device is designed to rotate freely about its vertical axis.

2.2.9.8 Hand-rails and handholds above 800 mm and not greater than 1900 mm shall be considered to meet the above requirement.

2.2.9.9 For every position that can be occupied by a standing passenger, at least one of the two required Handrails or handholds shall not be more than 1500 mm above the level of the floor at that position.

2.2.9.10 Areas which are occupied by the standing passengers and are not separated by seats from the side walls or rear wall of the vehicle shall be provided with at least two horizontal handrails parallel to the walls and installed at a height between 800 mm and 1500 mm above the floor. The dimensions of the rail shall be as per para 2.2.9.4.

2.2.9.11 Hand Rails and Hand Holds for Service Doors

2.2.9.11.1 Door apertures shall be fitted with Hand Rails and/or Hand Holds on each side.

2.2.9.11.2 Handrails and Handholds provided for service doors shall be such that they include a grasping point available to a person standing on the ground and adjacent to the service door or any of the successive door steps. Such point shall be situated, vertically, between 800 to 1000mm above the ground or from the surface of each step, and horizontally,

a) For position appropriate to the person standing on the ground, not more than 400 mm inwards from the outer edge of the first step, and

b) For position appropriate to the particular step not more than 400 mm inward from the inboard edge of that step and not outwards from the outer edge of the step considered.
2.2.9.11.3 In case of a double door in the vehicle, no centre stanchion or hand rail shall be fitted for ultra low floor buses.

2.2.10 Guarding of Stepwells

Where a seated passenger is likely to be thrown into a stepwell as a result of heavy braking, a guard shall be provided. The guard height shall be minimum 800 mm from the floor, and the guard shall extend inward from the wall at least 100 mm more than the centre line of the seating position of the passenger who is prone to this risk or upto the edge of the riser of the innermost step, which ever is higher in dimension.

2.2.11 Seats

2.2.11.1 All the seats shall be installed facing forward, except in case of Type I NDX buses where
- rear facing seat behind the driver,
- Side facing seats on the rear wheel hump,
shall be permitted.

2.2.11.2 Seat Layout

<table>
<thead>
<tr>
<th>Seat Layout</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Mini & Midi bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2X2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3X2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* In Midi & Mini buses, where it is not possible to meet the gangway requirements with 2X2 seat layout, the 2X1 seat layout may be provided.

Note: In case of 2x1 and 3x2 seat layout, the rows with lower number of seats shall be on service door side.

2.2.11.3 Driver Seat / Co-Driver Seat

Driver / Co-driver Seat shall comply with the requirements specified in AIS-023 – “Automotive Vehicles – Seats, their Anchorages & Head Restraints”, as amended from time to time.
2.2.11.4 Passenger Seats :

2.2.11.4.1 ‘Seat Width’ The minimum width of a seat cushion, measured from the vertical plane passing through the center of that seating position shall be as per AIS-023, as amended from time to time.

<table>
<thead>
<tr>
<th>Type</th>
<th>NDX</th>
<th>SDX</th>
<th>DLX</th>
<th>ACX</th>
<th>SDX</th>
<th>DLX</th>
<th>ACX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of seat Cushion on each side In mm (F)</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
</tbody>
</table>

For vehicles 2.35 m in width or less, the minimum seat width (F) shall be 200 mm. For vehicles above 2.35 m and up to 2.6 m in width, with 3X2 seating layout, the minimum seat width (F) shall be 200 mm.

Ref. Fig. 5

2.2.11.4.2 The minimum width of available space for each seating position (G): The minimum width of the available space for each seating position (G), measured from a vertical plane passing through the centre of that seating position between heights of 270 and 650 mm above the uncompressed seat cushion, shall be:
- 250 mm in the case of individual seats, and
- 225 mm in the case of continuous seats for two or more passengers.

Ref. Fig 5

For vehicles 2.35 m in width or less, the width of the available space for each seating position shall be 200 mm. Ref Fig. 5

For vehicles having a capacity not exceeding 22 passengers, in the case of seats adjacent to the wall of the vehicle, the available space does not include, in its upper part, a triangular area 20 mm wide by 100 mm high. In addition, the space needed for safety belts and their anchorages and for the sun visor should be considered as exempted.

For vehicles above 2.35 m and up to 2.6 m in width, with 3X2 seating layout, the minimum width of available space for each seating position (G) shall be 200 mm.

2.2.11.4.3 The minimum backrest height (H):

This is expressed as the vertical distance between the floor and the top of the seat or headrest. The dimension shall be as per AIS-023, as amended from time to time. Ref. Fig 5, Dimension H.

Type I: 800 mm
Type II: 1000 mm
Type III: 1100 mm
2.2.11.4.4 Minimum armrest height from cushion (if provided): 175 mm.
Ref. Fig 5

2.2.11.4.5 Armrest width (if provided):
The minimum Armrest width, wherever provided shall be as follows.
- Type I and Type –II : 40 mm.
- Type – III : 50 mm
The Armrest could be either fixed or retractable.
Ref. Fig 5

2.2.11.4.6 Depth of seat cushion :
The minimum depth of seat cushion shall be as follows:

<table>
<thead>
<tr>
<th>Depth of seat cushion in mm</th>
<th>Type I</th>
<th>Type II & III</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDX</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>SDX</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>DLX</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>ACX</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>NDX</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SDX</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DLX</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>ACX</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Ref. Fig. 6
Note: In case of differences between the values specified above and that of AIS-023, the values specified in AIS-023 shall be considered as final and standing.

2.2.11.4.7 Seat Spacing :
2.2.11.4.7.1 The distance between the front of a seat squab and the back of a seat squab of the seat preceding it, shall when measured horizontally and at a height 620 mm from the floor shall not be less than following (in mm):

<table>
<thead>
<tr>
<th></th>
<th>NDX</th>
<th>SDX</th>
<th>DLX</th>
<th>ACX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>Type II</td>
<td>680</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
<tr>
<td>Type III</td>
<td>-</td>
<td>680</td>
<td>680</td>
<td>680</td>
</tr>
</tbody>
</table>

Ref. Fig. 7
Note: In case of differences between the values specified above and that of AIS-023, the values specified in AIS-023 shall be considered as final and standing.

2.2.11.4.7.2 All measurements shall be taken, with the seat cushion and squab uncompressed in the vertical plane passing through the centerline of the individual seating space. (Ref. Fig. 7)
2.2.11.4.7.3 Reclining passenger seats shall be measured with the seat back in the normal position as specified by the manufacturer.

2.2.11.4.7.4 In case rearward clearance is provided, it shall continue upwards above the 100 mm level as an inclined plane and intersect the front edge of the seat structure immediately below the cushion.

2.2.11.4.7.5 For seat facing one another the minimum distance between the front faces of the seat squab of the facing seats, as measured across the highest points of the seat cushion shall not be less than 1372 mm.

2.2.11.4.8 **Seat base height (T) (Ref. Fig. 7)**:

The height of the uncompressed seat cushion (T) i.e. the distance from the floor to the horizontal plane tangent to the front upper surface of the seat cushion shall be between 450± 50 mm. This height may however be reduced to not less than 350 mm at the wheel arches and engine compartment.

2.2.11.4.9 **Minimum torso angle (α)(Ref. Fig. 8)**:

<table>
<thead>
<tr>
<th>Type</th>
<th>NDX</th>
<th>SDX, DLX, ACX</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>12°</td>
<td>15°</td>
</tr>
</tbody>
</table>

DLX and ACX buses shall have adjustable reclining seats.

2.2.11.4.10 **Seat Base:-Thickness**

The thickness of seat base in mm may be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Type I & II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDX</td>
<td>SDX</td>
</tr>
<tr>
<td>Thickness of seat cushion Front edge (min)</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>Thickness of seat cushion Rear edge (min)</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

Ref. Fig. 9

Note: Incase buses are fitted with PPLD/LDPE seats, the seat cushion thickness shall be minimum 25 mm.
2.2.11.4.11 **Seat Back:- Thickness**

The thickness of seat cushion back in mm may be as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>NDX</th>
<th>SDX</th>
<th>DLX</th>
<th>ACX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Type II</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Type III</td>
<td>-</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

Ref. Fig. 9.

Note: Incase buses are fitted with PPLD/LDPE seats, the seat back rest thickness shall be minimum 10 mm.

2.2.11.4.12 **Clearance Leg Space for seated passengers:**

A minimum clear space in front of each passenger seat shall be provided as shown in Fig. 10. The seat back of another preceding seat or a partition whose contour correspond approximately to that of the inclined seat back may intrude into this space as provided by Para 2.2.11.4.7. The local presence of seat legs in this space shall also be permitted provided that adequate space remains for the passenger’s feet. In the case of seats alongside the driver’s seat in vehicle with up to 22 passengers, intrusion of the dashboard, instrument panel, windscreen, sun visor, seat belts and seat belt anchorages shall be allowed.

Note: In case of differences between the specifications mentioned above and that of AIS-023, the specifications given in AIS-023 shall be considered as final and standing.

2.2.11.4.13 **Free height and Intrusion over seating position:**

2.2.11.4.13.1 **Free height over seating position (Head Room) (Ref. Fig. 11):**

Each seating position shall have free height of not less than 900 mm measured from the highest point of the uncompressed seat cushion. This free height shall extend over the vertical projection of the whole area of the seat and the associated foot space. However in the case of Mini Buses with Gross Vehicle weight (GVW) less than 3.5 tons, the free height shall not be less than 800 mm.

Note: In case of differences between the specifications mentioned above and that of AIS-023, the specifications given in AIS-023 shall be considered as final and standing.

2.2.11.4.13.2 **Intrusion over seating position (Ref. Fig. 11):**

In the space extending above the area mentioned in para 2.2.11.4.13.1, the following intrusions shall be permitted:

- Intrusion of the back of another seat;
- Intrusion of a structural member provided that the intrusion is included within a triangle whose peak is situated 650 mm from the floor and whose base is 100 mm in width and situated in the upper part of the space in question, adjacent to the side wall of the vehicle.
2.2.11.4.13.3 **Intrusion of Wheel arches (Ref. Fig. 11A & 11B):**

In the case of a vehicle for up to 22 passengers, intrusion of wheel arch shall be permitted, provided that one of the following two conditions is fulfilled.

2.2.11.4.13.3.1 The intrusion does not extend beyond the median vertical plane of the seating position. Ref. Fig. 11A

2.2.11.4.13.3.2 The nearest edge of the area 300 mm in depth available for the feet of the seated passenger is advance no more than 200 mm from the edge of the uncompressed seat cushion and to not more than 600 mm in front of the squab of the seat, these measurements being made in the median vertical plane of the seating position. Ref. Fig. 11B. In the case of two seats facing each other this provision shall apply to only one of the seats and the remaining space for the feet of seated passengers must be at least 400 mm.

2.2.11.4.13.4 In the case of seats alongside the driver’s seat in vehicles with up to 22 passengers, intrusion of hopper type windows when open and their fittings, of the dashboard / instrument panel, windscreen, sun visors, seat belts, seat belt anchorages and front dome.

2.2.12 Cabin Luggage Rack

2.2.12.1 All buses except Type I NDX & SDX buses shall have cabin luggage racks. The minimum dimensions of the cabin luggage rack shall be as given below.

<table>
<thead>
<tr>
<th>Type I</th>
<th>Type II and Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mini and Midi</td>
</tr>
<tr>
<td>Width from Side wall (in mm)</td>
<td>250</td>
</tr>
<tr>
<td>Height from Roof (in mm)</td>
<td>200</td>
</tr>
</tbody>
</table>

2.2.12.2 The cabin luggage racks shall be designed in such a way that the luggage is prevented from falling in the event of sudden braking or due to forces generated during cornering.

2.2.13 Roof Luggage Carrier

2.2.13.1 Where Roof Luggage Carrier (RLC) is provided the maximum length of the RLC shall not exceed 50% of the overall length of the vehicle and the width shall not exceed 60% of overall width of the vehicle.

2.2.13.2 Maximum height of RLC shall 250 mm from floor of RLC.

2.2.13.3 Clearance of RLC from roof top shall be at least 100 mm.
2.2.14 Access to Roof Luggage Carrier

2.2.14.1 The access to roof luggage carrier shall be through a ladder mounted on the rear wall of the vehicle.

2.2.14.2 The ladder shall be fitted in such a way that the emergency exit, where provided in the rear of the bus shall be accessible without hindrance.

2.2.14.3 The dimensions of the ladder shall be as given below –

<table>
<thead>
<tr>
<th>Dimension (in mm)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of first step above ground (A)</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>Step Height (B)</td>
<td>230</td>
<td>300</td>
</tr>
<tr>
<td>Step Width</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>Rung Diameter or width (D)</td>
<td>25</td>
<td>-</td>
</tr>
</tbody>
</table>

Ref. Fig. 12

2.2.15 Destination Board for Public Service Vehicles

2.2.15.1 Minimum of three destination boards shall be provided in Type I buses with at least one destination board each on front, rear and the service door side of the bus. However, in the case of Mini buses with Gross Vehicle Weight (GVW) less than 3.5 tons, at least two destination boards shall be provided.

2.2.15.2 For Type II and Type III minimum two destination boards shall be provided with one in the front and one in the rear.

2.2.15.3 The minimum dimensions of the destination board shall be as given below

<table>
<thead>
<tr>
<th>Location</th>
<th>Height</th>
<th>Width</th>
<th>Mini and Midi buses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Height</td>
</tr>
<tr>
<td>Front</td>
<td>220</td>
<td>1800</td>
<td>200</td>
</tr>
<tr>
<td>Rear</td>
<td>220</td>
<td>900</td>
<td>200</td>
</tr>
<tr>
<td>Service Door Side</td>
<td>220</td>
<td>900</td>
<td>200</td>
</tr>
</tbody>
</table>

2.2.15.4 The destination board shall be illuminated such that the whole of the destination board and the writing thereon are legible at a minimum distance of 30 metres.
2.2.16 **Driver’s Work Area**

Buses other than Midi and Mini Buses shall meet following driver work area requirements:

2.2.16.1 **Driver Entry and Exit**

2.2.16.1.1 **Driver Door**

2.2.16.1.1.1 All buses with the front engine shall be provided with a Driver Door.

2.2.16.1.1.2 In the case of Rear Engine Buses, no separate driver door shall be required, provided that the condition for minimum number of emergency exits specified in para 2.2.4.12 is met.

2.2.16.1.1.3 The minimum height of the driver door aperture, i.e., clear opening excluding handles, measured from the bus floor in the driver’s area, shall not be less than 1250 mm high and 650 mm wide. In case of Midi and Mini buses, this dimension shall be 1050 mm high and 650 mm wide.

2.2.16.2 **Climb Facility**

2.2.16.2.1 The maximum height of first step from the ground shall be 550 mm.

2.2.16.2.2 The maximum height of other steps shall be 250 mm.

2.2.16.2.3 The maximum number of steps shall be three.

2.2.16.2.4 The minimum step width shall be 150 mm.

2.2.16.2.5 Minimum step depth shall be 150 mm.

2.2.16.2.6 The steps need be provided with anti-slip surface. The anti-slip surface shall comply with the relevant AIS standard as and when notified.

2.2.16.3 **Hand Holds**

2.2.16.3.1 The driver door aperture shall have minimum two handholds with one on each side.

2.2.16.3.2 The hold on the left-hand side shall be positioned such that the lower edge of the grip is at a height not more than 1600 mm. The right side handhold shall be located at a height not greater than 2168 mm from the floor level.

2.2.16.3.3 The cross section of the hand hold shall not be less than 20 mm and not more than 38 mm in diameter. In case of rectangular sections, the size of the section shall be of size 25 mm by 15 mm.
2.2.16.3.4 The corners of the hand holds need to be rounded and smooth.

2.2.16.3.5 Hand clearance to the mounting surface i.e. the gap for inserting the palm shall not be less than 30 mm.

2.2.16.3.6 The hand holds shall meet the requirements for the strength, as specified in the relevant AIS standard as and when notified.

2.2.16.3.7 The handholds shall be placed such that the projection will not cause injury while climbing in or out through the door. No sharp corners, pointed edge shall be permitted.

2.2.16.3.8 The grips / holds shall have anti-slip surface. The anti-slip surface shall comply with the relevant AIS standard as and when notified.

2.2.16.4 Dimensional Requirement

2.2.16.4.1 Reference System for dimensions - The intersection point (co-ordinate origin) of all the three planes corresponds to the vehicle projected at the heel point of the accelerator pedal. (Refer Fig. 13)

2.2.16.4.2 Heel Point - Heel point shall be located at a minimum distance of 340 mm from the inner face of the bulkhead. For this purpose the bulkhead is defined as a structure ahead of the heel point, supporting the front structure of the vehicle.

2.2.16.4.3 Reference Point - The “H” Point (Reference Point) shall be specified by the Chassis Manufacturer.

2.2.16.4.4 Work area Dimension –

2.2.16.4.4.1 The minimum width of the driver area from the right side wall shall be 800 mm, at a height of 900 mm from the heel point horizontal plane.

2.2.16.4.4.2 The minimum distance of driver partition from the driver seat shall be 25 mm from the rearmost point of the driver seat in its rearmost position with seat back reclined backwards to an angle of 12 degrees. (Refer dimension F in Fig. 14)

2.2.16.4.4.3 The minimum distance from H-point to roof top shall be 1060 mm. (Refer dimension D in Fig. 14)

2.2.16.4.4.4 The distance between the heel point and the H – point shall be between 600 mm to 640 mm. (Refer dimension A in Fig. 14)

2.2.16.4.4.5 The distance of H-point from floor shall be minimum 500 mm with the driver seat in the upper most position. (Refer dimension B in Fig. 14)
2.2.16.4.5 Position of Steering Wheel

2.2.16.4.5.1 The chassis manufacturer shall specify the position of the steering wheel with reference to the heel point.

2.2.16.4.5.2 The minimum distance of lower end of steering wheel from driver seat back shall be 350mm. (Refer dimension E in Fig. 14)

2.2.16.4.5.3 The thigh clearance of the steering wheel with driver seat in the upper most position shall be between 200 mm to 260 mm. (Refer dimension C in Fig. 14)

2.2.16.4.6 Placement of Instrument Panel

2.2.16.4.6.1 The placement of instrument panel shall be such that the primary instruments and controls are visible unobstructed while viewed from the driver seat. A typical driver information layout is shown in Fig. 15.

2.2.16.4.6.2 The dashboard shall be of non metallic, fire resistant, energy absorbing material and so constructed that in the event of a collision it shall cause minimum injury to the driver.

2.2.16.4.7 Shroud for Wiring Harness

2.2.16.4.7.1 A suitable non metallic, fire resistant, energy absorbing cover shall be provided for the wiring harness and other exposed parts below the instrument panel. The cover shall be so constructed that in the event of a collision it shall cause minimum injury to the driver.

2.2.16.4.8 Position of Controls

2.2.16.4.8.1 The position of the controls such as accelerator, clutch, gear lever, service brake, parking brake etc. shall be specified by the vehicle manufacturers.

2.2.16.4.9 Heating, Cooling & Ventilation for Driver

2.2.16.4.9.1 The driver’s work area shall be provided with the blowers or other suitable devices to ensure proper ventilation. These devices shall be capable of minimum of three air changes per minute or as per standard whenever notified.
2.2.17 **Standee Passenger Area**

The capacity of standee passengers to be allowed in a bus will be governed on the basis of free bus floor area available for standee passengers (Asp) by calculating at the rate of six standee passengers per Sq. Metre. the surface area “Asp” available for standee passengers will be calculated after deducting the following from the total floor area of the vehicle :-

I. The area of driver’s compartment i.e. the space intended for driver’s exclusive use and containing the driver’s seat, the steering wheel, control, instruments and other devices necessary for driving or operating the vehicle.

II. The area of steps at door and the area of any other step with a depth of less than 30 cms. and the area swept by the door and its mechanism when it is operated.

III. The area of any part over which the vertical clearance is less than 135 cms. e.g. above wheel arch and above the engine, measured from the floor, according to the specified method and disregarding permitted intrusion.

IV. The area of any part of the vehicle to which access to passengers to be prevented for safety or any other reasons e.g. space available on both sides of the driver.

V. The area of floor space reserved solely for carriage of goods and luggage and from which passengers are excluded.

VI. the floor area occupied by any staircase in the vehicle

VII. The area of all parts which are not accessible to a standee passenger.

VIII. The area 30cms. in front of any seat.

IX. The area of all parts where the clear height above the floor is less than 190 cms. or in the case of the section of the gangway situated above and behind the rear axle, and attaching parts thereof, less than 180 cms. (excluding the hand – holds in this case).

X. The area forward of a vertical plane passing through the centre of the seating surface of the drivers seat (in its rear – most position) and through the centre of the exterior rear – view mirror mounted on the opposite side of the vehicle.

XI. Any part of the surface of the floor (e.g. a corner or edge) on which it is not possible to place any part of the rectangle of 400 mm x 300 mm.
XII. Any surface area which is not capable of circumscribing a rectangle of 400 mm x 300 mm. the vehicle.

XIII. The bus floor space of 150mm width along the bus gangway for facilitating movement of the passengers / conductor.

XIV. The area of all parts of the bus floor in which the slope exceeds the maximum permissible value as prescribed in clause 2.2.8.7.

2.2.18 Design Seating and Standee Passenger Capacities

The design seating capacity of a bus shall be calculated based on the seat layout and seat spacing as given in the table below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Seat Layout</th>
<th>Seat Width (in mm)</th>
<th>Seat spacing (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I NDX</td>
<td>2x2</td>
<td>400</td>
<td>650</td>
</tr>
<tr>
<td>Type I SDX</td>
<td>2x2</td>
<td>400</td>
<td>650</td>
</tr>
<tr>
<td>Type I DLX</td>
<td>2x2</td>
<td>400</td>
<td>650</td>
</tr>
<tr>
<td>Type I ACX</td>
<td>2x2</td>
<td>400</td>
<td>650</td>
</tr>
<tr>
<td>Type II NDX</td>
<td>3x2</td>
<td>400</td>
<td>680</td>
</tr>
<tr>
<td>Type II SDX</td>
<td>3x2</td>
<td>400</td>
<td>680</td>
</tr>
<tr>
<td>Type II DLX</td>
<td>2x2</td>
<td>400</td>
<td>680</td>
</tr>
<tr>
<td>Type II ACX</td>
<td>2x2</td>
<td>400</td>
<td>680</td>
</tr>
<tr>
<td>Type III SDX</td>
<td>3x2</td>
<td>450 or 500 (individual seat)</td>
<td>680</td>
</tr>
<tr>
<td>Type III DLX</td>
<td>2x2</td>
<td>450 or 500 (individual seat)</td>
<td>680</td>
</tr>
<tr>
<td>Type III ACX</td>
<td>2x2</td>
<td>450 or 500 (individual seat)</td>
<td>680</td>
</tr>
</tbody>
</table>

Note:
(1) The seat layout could be at the option of the bus builder, subject to the maximum seat layout specified in the table above and accordingly the seating area may be computed based on the above table information.

(2) In case of Mini & Midi bus where it is not possible to meet gangway requirement with 2x2 seat layout, 2x1 seat layout may be used for the purpose of calculating the seating capacity.

(3) In case of differences between the values specified above that of AIS-023, the specifications of AIS-023 shall be considered as final and standing.

2.2.18.2 The minimum gangway width for the calculation shall be as given in para 2.2.8.1.

2.2.18.3 The seating and standee passenger capacities shall be indicated in the Type Approval certificate for the bus body design.
2.2.18.4 Formula for calculation of seating and standee passenger areas –

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
<th>Area (in mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of the Driver Compartment</td>
<td>Width x Depth of Driver Work Area</td>
<td>Ad</td>
</tr>
<tr>
<td>Total projected Step Well Area</td>
<td>Sum of projected Area of all Step Wells</td>
<td>As</td>
</tr>
<tr>
<td>Projected area of Engine</td>
<td>Width x Length of Engine projected on the floor Area</td>
<td>Ae</td>
</tr>
<tr>
<td>Area of any part of the Vehicle</td>
<td>where vertical clearance is less than 1350 mm (Engine etc.)</td>
<td>Aw</td>
</tr>
<tr>
<td></td>
<td>Area required to provide a clear work area at service floor area occupied by any stair case</td>
<td>Ast</td>
</tr>
<tr>
<td></td>
<td>Area of parts where clear height above floor level less than 1900 mm (1750mm in case of mini bus)</td>
<td>Ac</td>
</tr>
<tr>
<td></td>
<td>Area of seat in facing partition</td>
<td>Ap</td>
</tr>
<tr>
<td></td>
<td>Area of the parts where slope exceeds the maximum specified value for purpose of passengers</td>
<td>Asl</td>
</tr>
<tr>
<td></td>
<td>Total Area excluded for purpose of calculating seated passenger capacity</td>
<td>Aex</td>
</tr>
<tr>
<td></td>
<td>Area of Gangway</td>
<td>Ag</td>
</tr>
<tr>
<td></td>
<td>Total internal Floor Area</td>
<td>Aint</td>
</tr>
<tr>
<td></td>
<td>Area for seated Passengers</td>
<td>Apass</td>
</tr>
<tr>
<td></td>
<td>Area for standee passengers</td>
<td>Astd</td>
</tr>
</tbody>
</table>

Note: Value of Astd is the solution of following three equations –

\[
Aex = Ad + As + Ae + Aw + Asl + Ag + Ast + Ap
\]

\[
Apass = Aint – (Aex + Ag)
\]

\[
Astd = Aint – (Ad + As + Ae + Aw + Ast + Ac + Ap + Asl + Apass + 150mm x Length of Gangway)
\]
2.2.18.5 Formula for calculation of number of seats and number of standees permitted.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Seats permitted</td>
<td>Apass/ (seat spacing x Seat Width)</td>
<td>No. of seats</td>
</tr>
<tr>
<td>No of Standees permitted</td>
<td>Astd x 5 x 10^-6</td>
<td>No. of Standees</td>
</tr>
</tbody>
</table>

2.2.19 Provisions for Disabled Passengers

2.2.19.1 All Type I buses shall have at least two passenger seats in case of Mini & Midi buses and four passenger seats in case of other buses designated as priority seats for persons with disabilities. These seats shall be only of the forward facing type and preferably be located behind the driver’s seat.

2.2.19.2 The seats designated for disabled passengers shall be indicated with appropriate sign(s). An illustration of the signs to be provided above the priority seats is shown in Figure 16.

2.2.19.3 The priority seats shall be provided with appropriate facility for securing the crutches, canes, walkers etc. to facilitate convenient travel for persons with disabilities.

2.2.19.4 Handrails and / or stanchions shall be provided at the entrance of all Type I buses in a configuration, which allows persons with disabilities to grasp such assists from outside the vehicle while starting to board, and to continue using such assists throughout the boarding process, until they reach the designated seating area. The dimensions of the hand rails shall be as per para 2.2.9.

2.2.19.5 All Type I NDX buses shall be provided with controls adjacent to priority seats for requesting stops and which alerts the driver that a mobility aid user wishes to disembark. Such a system shall provide auditory and visual indications that the request has been made. Controls shall be mounted not higher than 1300 mm and now lower than 410 mm above the floor, shall be operable with one hand and shall not require tight grasping, pinching, or twisting of the wrist. The force required to activate controls shall not be greater than 2.2 kg.

2.2.19.6 All Type I NDX public service buses shall be provided with Audio / Visual or Audio-Visual Information System permitting driver or recorded or digitised human speech / visual messages, to inform passengers inside the bus regarding the destination, bus stops etc.,
2.2.20 Side Underrun Protection

2.2.20.1 The requirements of Side underrun protection shall be in accordance with IS-14682:1999, as amended from time.

2.2.21 Rear Underrun Protection

2.2.21.1 The requirements of Rear Underrun Protection shall be in accordance with IS-14812:2000, as amended from time to time.

2.2.22 Provision of Toilet

2.2.22.1 In case of Type III ACX buses a toilet may be provided.

Note: The requirements for various categories of buses are also provided in matrix form in Appendix 3.
ANNEXURE 1
(See 2.0)

Categorisation of Buses

Bus

Type I
- NDX
- Micro Bus
- Standee
- Non Standee
- Low Capacity Bus

Type II
- SDX
- Medium Capacity Bus

Type III
- DLX
- Single Deck Articulated Bus
- Single Deck Double Articulated Bus
- Medium Capacity Bus

Type IV
- ACX
- High Capacity Bus
- Double Deck Bus
- Double Deck Articulated Bus
- Single Deck Tandem Axle Bus

Special Purpose Buses
Figure 1

Steps

<table>
<thead>
<tr>
<th>Classes</th>
<th>I</th>
<th>II, III</th>
</tr>
</thead>
<tbody>
<tr>
<td>First step from ground ‘D’</td>
<td>Max. height (mm)</td>
<td>340 (1)</td>
</tr>
<tr>
<td></td>
<td>Min. depth (mm)</td>
<td></td>
</tr>
<tr>
<td>Other steps ‘E’</td>
<td>Max. height (mm)</td>
<td>250 (3)</td>
</tr>
<tr>
<td></td>
<td>Min. height (mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min. depth (mm)</td>
<td></td>
</tr>
</tbody>
</table>

*/ 230 mm for vehicles having a capacity not exceeding 22 passengers.

(1) 700 mm in the case of an emergency door.

1500 mm in the case of an emergency door in the upper deck of a double deck vehicle.

(2) 400 mm in the case of Type I bus with solely mechanical suspension and 430 mm in the case of Type II and Type III vehicles with solely mechanical suspension

(3) 300 mm in the case of steps at a door behind the rearmost axle.

(4) 250 mm in gangways for vehicles having a capacity not exceeding 22 passengers.

(5) For at least one service door; 400 mm for other service doors.

Note:

1. **At a double doorway the steps in each half of the access passage shall be treated separately.**
2. **E need not be the same for each step.**
Figure 2

Access to Service Doors

<table>
<thead>
<tr>
<th>Dimensions in mm</th>
<th>Other than Midi and Mini Bus</th>
<th>Midi and Mini bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width of upper panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>Height of upper panel (A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type I 1100</td>
<td>1100*</td>
</tr>
<tr>
<td></td>
<td>Type II 950</td>
<td>950/950*</td>
</tr>
<tr>
<td></td>
<td>Type III 850</td>
<td>700/950*</td>
</tr>
<tr>
<td></td>
<td>Total height of dual panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type I 1800</td>
<td>1650</td>
</tr>
<tr>
<td></td>
<td>Type II 1650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type III 1550</td>
<td>1400</td>
</tr>
</tbody>
</table>

* Alternate trapezoidal section having a height of 500mm, forming the transition between the width of the upper and the lower panel, may be used. In this case, the total height of the rectangle section and this trapezoidal section of the upper panel shall be 1100 mm for all types of vehicles other than Midi and Mini buses, and 950 mm for Midi and Mini buses.
Gangways

<table>
<thead>
<tr>
<th></th>
<th>Other than Midi and Mini Bus</th>
<th>Midi and Mini Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type I</td>
<td>Type II</td>
</tr>
<tr>
<td>Diameter of the lower cylinder(A)</td>
<td>450</td>
<td>350</td>
</tr>
<tr>
<td>Height of lower cylinder</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Diameter of the upper cylinder(C)</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Height of upper cylinder(B)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Overall Internal height(H)</td>
<td>1900</td>
<td>1900</td>
</tr>
</tbody>
</table>
Figure 4
Siting of Hand Holds – Testing of Hand Holds
The minimum depth of seat cushion shall be as follows:

<table>
<thead>
<tr>
<th>Depth of seat cushion, (K) in mm</th>
<th>Type I</th>
<th>Type II & III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDX</td>
<td>SDX</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
</tbody>
</table>

Figure 6
Depth of Seat Cushion

Figure 7
Seat Spacing
Minimum torso angle

NDX : 12 deg.
SDX, DLX & ACX : 15 deg.

Figure 8
Passenger seat torso angle
Seating Base Thickness

The thickness of seat base in mm may be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Type I & II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDX</td>
<td>SDX</td>
</tr>
<tr>
<td>Thickness of seat cushion front edge (min)</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>Thickness of seat cushion Rear edge (min)</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

Seating Back Thickness

The thickness of seat cushion back in mm may be as follows:

<table>
<thead>
<tr>
<th></th>
<th>NDX</th>
<th>SDX</th>
<th>DLX</th>
<th>ACX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Type II</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Type III</td>
<td>-</td>
<td>50</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>
Figure 10
Passenger Seat Space for Seated Passenger
Figure 11
Permitted Intrusion above Seating Position
Figure 11A
Permitted Intrusion of a Wheel Arch not extending beyond the vertical centre line of the side seat

Figure 11B
Permitted Intrusion of a Wheel Arch extending beyond the vertical centre line of the side seat
Figure 13
Dimensional Requirement

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Distance from Heel Point to “H” Point</td>
<td>600 mm to 640 mm</td>
</tr>
<tr>
<td>B</td>
<td>Minimum Distance from floor to “H” Point with the driver’s seat in the upper most position</td>
<td>500 mm</td>
</tr>
<tr>
<td>C</td>
<td>Thigh Clearance</td>
<td>200 mm to 260 mm</td>
</tr>
<tr>
<td>D</td>
<td>Minimum Distance from “H” Point to Roof top</td>
<td>1060 mm</td>
</tr>
<tr>
<td>E</td>
<td>Minimum Distance from the lower end of steering to the front of driver’s seat back rest</td>
<td>350 mm</td>
</tr>
<tr>
<td>F</td>
<td>Minimum Distance of driver’s partition from the rear of the driver’s seat with the driver’s seat in the rear most position</td>
<td>25 mm</td>
</tr>
</tbody>
</table>

Figure 14

Driver’s Work Area Requirements
Figure 15
Figure 16
Pictogram for Passengers with Reduced Mobility
CHAPTER : 3

TECHNICAL & SAFETY REQUIREMENTS

3.1 Body Structure Strength

3.1.1 The body structure of all single deck buses of Type II and Type III category excluding Mini buses, shall be of sufficient strength, to meet the test requirements in Chapter 6, para 6.1.

3.2 Body Structure Stability

The stability of the body structure on the vehicle chassis shall meet the requirements of the stability test defined in Chapter 6, para 6.2.

3.3 Joint Strength

3.3.1 Body panel joints shall be capable of meeting the requirements specified in Chapter 6, para 6.7.

3.4 Doors

3.4.1 The structure of the door shall be able to withstand distortion due to forces induced during its operation and the operability of door components critical to the removal of the passengers after an accident shall be ensured.

3.4.2 The external side of the door shall not have any projection and the hinges and door handles shall be recessed.

3.4.3 Door shall be fitted with weather resistant EPDM rubber seals of suitable design to avoid dust and water ingress.

3.4.4 Service doors

3.4.4.1 All Type I buses, except NDX shall be provided with Power Operated Service Door(s). The Power Operated Service Door shall be optional in the Type I NDX buses. Type II & Type III buses shall be provided with Power Operated or Manually Operated Service Doors(s).

3.4.4.2 Service door shall be capable of being easily opened from inside and from outside the vehicle when the vehicle is stationary. However this requirement does not preclude the possibility of locking the door from the outside, provided the door can be always opened from inside.

3.4.4.3 The control or device for opening a service door from the outside shall be located at a height of 1150 mm to 1250 mm from the ground level. The measurement shall be carried out in the unladen condition on level surface.
3.4.4.4 Single piece manually operated service door which is hinged or pivoted shall be such that in the event the open door comes in contact with a external object while the vehicle is in forward motion the door shall tend to close.

3.4.4.5 Where direct view is not adequate, optical or other devices shall be installed to enable the driver to detect from his seat the presence of a passenger in the immediate interior or exterior vicinity of every service door.

3.4.4.6 Manually operated service doors fitted with slam type lock shall be of the two stage type.

3.4.4.7 On the inside of a service door there shall not be any device intended to cover the inside steps when the door is closed. The door operating mechanism and other equipment attached to the inside door should not pose safety hazard for the passengers.

3.4.4.8 For every door which opens inwards, the mechanism shall be so constructed that its movement is not likely to cause injury to the passengers during normal use. Where necessary suitable protection devices may be provided.

3.4.4.9 Additional Requirements for Power Operated Service Doors

3.4.4.9.1 In the event of an emergency every power-operated door shall be capable of -

- being opened from inside when the vehicle is stationary even when locked from outside, by controls with or without power supply by which the door normally operates.
- overriding all the other door controls.
- being operated by a single person easily by hand.
- The controls shall be easily seen and identified by a person approaching the door or standing in front of the door.
- The interior controls are placed on or within 300 mm of the door, at a height between 1500 mm to 1600 mm above the first foot step.

3.4.4.9.2 The construction and control system of every power operated service door be such that a passenger is unlikely to be injured by the door or trapped between the door while closing. The door system shall meet the test requirements defined in Test methods para 6.5.

3.4.4.9.3 The movement of the doors shall not be abrupt.
3.4.4.10 Additional Requirements for Automatic doors

3.4.4.10.1 Activation of opening circuits

3.4.4.10.1.1 The opening controls of every automatically operated service door shall be capable of being activated and deactivated only by the driver from his seat. However provision in para 3.4.4.9.1 shall apply in the event of an emergency.

3.4.4.10.1.2 Activation of opening controls by the driver shall indicate the status by means of indicators (illuminated push button/sign) placed on or adjacent to the door whose control has been activated.

3.4.4.10.2 Opening of automatically operated Service Doors

3.4.4.10.2.1 After activation of the opening controls by the driver, the passenger shall be able to open the door by one of the methods below:

- from inside by a push button control or a passing through a light barrier.
- from outside by a illuminated push button clearly indicating status.

3.4.4.10.3 Closing of automatically operated Service Door

3.4.4.10.3.1 The automatically operated service door shall close automatically after a time interval of opening of the door. If a passenger enters or exits during this time interval, a safety device (e.g. a foot board contact, light barrier) shall ensure that the time until the door closes is sufficiently extended.

3.4.4.10.3.2 If a passenger enters or exits while the door is closing, the closing process shall be interrupted and the door shall return to the open position.

3.4.5 Emergency Exits

3.4.5.1 Emergency Doors

3.4.5.1.1 The emergency doors shall be capable of operation from both inside and outside when operated manually. However this requirement shall not be construed as precluding possibility of locking the door from outside provided the door can be opened from inside.

3.4.5.1.2 The outside handles of emergency doors shall lie within 200 mm on either side of centreline of the door drawn in the horizontal plane. However, the position of the outside handle shall not be more than 1800 mm above the ground level in the unladen condition.

3.4.5.1.3 Doors shall be hinged at the forward edge and in case of horizontal door the hinge shall be on the top edge.
3.4.5.1.4 Emergency doors shall not be power operated or of sliding type.

3.4.5.1.5 Emergency doors shall open outward and shall be capable of remaining open outwards and at an angle of atleast 100°, such that aperture is clear of any obstructions.

3.4.5.1.6 Door check, stay or strap which is capable of meeting requirements specified in para 3.4.5.1.5 may be used.

3.4.5.1.7 The forward edge of the emergency door shall be in the same transverse plane tangent to the rear-most point of a seat back

3.4.5.1.8 All emergency doors shall be provided with an audible device to warn the driver when the emergency doors are not securely closed. The warning device shall operate due to the movement of the door catch and not by the movement of the door itself.

3.4.5.2 Emergency Windows

3.4.5.2.1 Emergency windows equipped with ejection type of construction shall be meet the requirement specified in IS 13944:1995.

3.4.5.2.2 Every hinged or executable emergency window shall open outwards.

3.4.5.2.3 Emergency window shall be capable of being easily and instantaneously operated from inside and from outside the vehicle by means of a device approved by the test agency.

3.4.5.2.4 Emergency window shall be also made of readily breakable safety glass. In such case a device shall be provided adjacent to each emergency window, available to the person in the vehicle for ready access for breaking the window. The window glass shall be made of safety glass as specified by Bureau of Indian Standards and shall readily break on impact when hit by a hammer in the event of an emergency.

3.4.5.2.5 Every emergency window which can be locked from outside shall be constructed such that it shall be capable of being opened at all times from inside.

3.4.5.2.6 Emergency window where horizontally hinged at the top edge shall be provided with a suitable stay to hold the door fully open. Every emergency window shall operate such that it does not obstruct clear passage.

3.4.5.2.7 Every hinged emergency window which is not visible from the driver’s seat shall be fitted with a audible warning device to warn failure of locking system.
3.4.5.3 Escape Hatches

3.4.5.3.1 Escape hatches shall be ejectable, hinged or readily breakable safety glass. Operation of escape hatch shall not obstruct clear passage from inside or outside the vehicle. Ejectable type hatches shall not detach from the vehicle fully.

3.4.5.3.2 Escape hatches shall be capable of being easily operated from inside and from outside the vehicle. However this requirement shall not be construed as precluding possibility of locking the escape hatch from outside for the purpose of securing the vehicle when unattended, provided the escape hatch can be always opened from inside the vehicle.

3.4.5.3.3 In case breakable safety glass is provided, a device shall be provided for breaking the escape hatch.

3.4.5.4 Marking of Emergency Exits

3.4.5.4.1 All emergency exits shall be prominently designated in red letters in English as also in the regional language.

"EMERGENCY EXIT"

or

"EMERGENCY DOOR"

and by symbols

when viewed from inside. Concise operating instructions describing each motion necessary to unlatch and open the exit shall be displayed. These instructions shall be located within 150 mm of the release mechanism.

3.5 Door Components

3.5.1 Door components shall meet the requirements specified in Rule 124 of CMVR. The door components shall be meet requirements specified in para 6.6.
Table 1
Standards Related to Door Components

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Vehicles : locking systems and door retention component – general requirement</td>
<td>IS 14225-1995*</td>
</tr>
<tr>
<td>Automotive Vehicles: window retention and release systems for buses</td>
<td>13944-1994*</td>
</tr>
</tbody>
</table>

* As amended from time to time

3.6 Window

3.6.1 Where windows with glazing are provided the glazing shall meet requirement specified as in para 3.6.2 & 3.6.3.

3.6.2 Window Glazing

3.6.2.1 The window glass shall be made of safety glass as specified in IS 2553 Part 2 and shall readily break on impact when hit by a hammer in the event of an accident.

3.6.3 Thickness of Glazing

3.6.3.1 Minimum glazing thickness for windows, shall be as per IS : 2553 (Part-2) as amended from time to time.

3.6.4 Edges

3.6.4.1 The edge shall be crown edge, satin finish for all the exposed edges that is likely to come in touch with the passenger’s body. (This Edge specification corresponds to Edge No. 1 specified in SAE J673).

3.6.5 Window Frames

3.6.5.1 The glazing may be mounted on frame; constructed from aluminum extrusions or formed steel/coated sections. Alternately directly, sliding on flocked rubber channels supported by aluminum/steel section.

3.6.5.2 The window frames shall be mounted such that distortions and change of aperture dimensions due to forces on the structure does not deform the guideways. The window glass/glass and frame shall slide smoothly when subjected to normal pull force (50 to 75N).

3.6.5.3 The window frame shall be attached to the structure by weather strips or bonded with adhesive or any other suitable method.
3.6.5.4 The mounting shall meet requirement specified in BIS Standard- Window retention and release system for Buses Safety Requirement IS 13944-1994. However, this requirement shall not be applicable for Mini buses whose Gross Vehicle Weight (GVW) is less than 3.5 tons.

3.6.5.5 The window frame fitted on buses shall meet the requirements specified in AIS-068 as amended from time to time

Table 2

Related standards for Window Glazing

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Glasses: Part 2 for Road transport</td>
<td>IS 2553 Part 2*</td>
</tr>
<tr>
<td>Window retention and release system for Buses:- Safety Requirement</td>
<td>IS: 13944-1994*</td>
</tr>
<tr>
<td>Water Proofing Test on Automobiles</td>
<td>IS 11865-1992*</td>
</tr>
</tbody>
</table>

* As amended from time to time

3.7 **Ingress of dust and rain water:**

3.7.1 All body joints, front safety glass, rear safety glass, doors, windows and hatches should be so constructed such that it does not permit ingress of rain water, in the fully closed condition. It is recommended that the bus body builders carry out their own internal assessment test to check water proofing as per IS: 11865 – 1992.

3.7.2 All body joints, front safety glass, rear safety glass, doors, windows and hatches should be so constructed such that it does not permit ingress of dust, in the fully closed condition. It is recommended that the bus body builders carry out their own internal assessment test to check dust ingress as per IS: 11739 – 1997.

3.7.3 Drain holes shall be provided in the window frame such that water shall flow outward and does not flow into the structure cavity or into the passenger compartment.

3.8 **Body Insulation**

3.8.1 Body insulation shall be provided with suitable material for DLX and ACX buses and optional for other categories. It is recommended to use materials like Polyurethane or Glass Wool of minimum thickness of 40 mm and minimum density of 40 kg/m³. Materials superior to the ones shall also be permitted.
3.9 Rear View Mirrors

3.9.1 The rear view mirrors shall meet the requirements specified in AIS Standards AIS-001 and AIS-002 as amended from time to time.

3.10 Wind Screen Wiping System and Driver’s field of Visions

3.10.1 The Wind Screen Wiping System shall meet the requirements specified in AIS Standard AIS-011 as amended from time to time.

3.10.2 All types of buses shall meet the requirements of driver’s field of vision specified in AIS-032 as and when notified.

3.11 Vehicle Seats and Seat Belts

3.11.1 All Seat designs and Seat anchorage designs used in buses, shall meet the requirements of AIS-023 as amended from time to time.

3.11.2 All types of buses shall be provided with seat belts as per the provisions of CMVR. The seat belts assemblies and their anchorages shall meet the requirements of AIS-005 and AIS-015 as and when notified separately under CMVR.

3.11.3 The Seats used in buses shall be those which are type approved by the testing agency as per AIS-023, as amended from time to time.

3.12 Strength Roof Luggage Carrier

3.12.1 The RLC platform shall be able to withstand –

- Uniformly distributed static load of 150 kgs / m²
- Inertia forces equivalent of 2.5 g.
- Shear force equivalent to 1.5g.

3.12.2 RLC structure, its mountings and the bus roof structure integrity in relation to RLC need to be type approved both at design stage as also at prototype type approval stage.
3.13 Pad Material

The recommended pad material for various types / categories of buses are as given in table below. Materials superior to the ones indicated in this table shall also be permitted.

<table>
<thead>
<tr>
<th>Type</th>
<th>Fibre glass / Polymer (moulded)</th>
<th>PU Foam</th>
<th>Rubberised coir</th>
<th>Latex foam</th>
<th>Moulded P.U. Foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>NDX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDX</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>NDX</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDX</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Type III</td>
<td>SDX</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.14 Upholstery

The recommended upholstery for various types / categories of buses are given in table below. Materials superior to the ones indicated in this table shall also be permitted.

<table>
<thead>
<tr>
<th>Type</th>
<th>PVC Rexene</th>
<th>Foam Rexene</th>
<th>Tapestry Cloth</th>
<th>Velvet Cloth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>NDX</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDX</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Type II</td>
<td>NDX</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDX</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Type III</td>
<td>SDX</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>ACX</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
3.15 **Other Features**

The recommended features for various types / categories of buses are given in table below. However, features superior to the ones indicated in this table may also be permitted.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDX</td>
<td>SDX</td>
<td>DLX</td>
</tr>
<tr>
<td>Head Rest</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seat Arm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seat Back - Fixed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Seat Back - Reclining</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Magazine Pouch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Folding Table for Food Tray</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Water bottle holding fixture</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fan on each row (min. of 12 Watts)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reading Lights</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 3

Recommended Specifications for moulded polyurethane cushion :

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Characteristic</th>
<th>Specification</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Density</td>
<td>40 - 60 kg/m³</td>
<td>As per IS 7888 – 1976</td>
</tr>
<tr>
<td>2.0</td>
<td>Compression set</td>
<td>12 % Max.</td>
<td>As per IS 7888 – 1976</td>
</tr>
<tr>
<td>3.0</td>
<td>Tensile test</td>
<td>1.2 to 1.9 kg/cm²</td>
<td>As per IS 7888 – 1976</td>
</tr>
<tr>
<td>4.0</td>
<td>Elongation</td>
<td>110% Min.</td>
<td>As per IS 7888 – 1976</td>
</tr>
<tr>
<td>5.0</td>
<td>Resilience</td>
<td>58 - 63 %</td>
<td>As per JIS K 6401</td>
</tr>
<tr>
<td>6.0</td>
<td>Rebound fatigue</td>
<td>1,00,000 cycles</td>
<td>As per ISO 3385-1989</td>
</tr>
<tr>
<td></td>
<td>Reduction in height</td>
<td>8% Max.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction in hardness</td>
<td>12% Max.</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>Flammability requirements for the foam & upholstery</td>
<td></td>
<td>As per IS 15061:2002</td>
</tr>
</tbody>
</table>
Table 4
Related Standards for Cushion / Pad Materials

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molded Rubberize Coir Cushion</td>
<td>IS 11060:1984</td>
</tr>
<tr>
<td>Latex Foam Rubber Products</td>
<td>IS 1741:1960</td>
</tr>
</tbody>
</table>

Table 5
Related Standards for Upholstery

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl Coated Fabric</td>
<td>IS 1259:1984</td>
</tr>
<tr>
<td>Expanded Vinyl Coated Fabric</td>
<td>IS 8698</td>
</tr>
<tr>
<td>PVC Coated Fabric</td>
<td>IS 3322 Part I : 1987</td>
</tr>
<tr>
<td>Rayon Velvet</td>
<td>IS 4439:1988</td>
</tr>
<tr>
<td>Textile Covering – Tufted Carpet</td>
<td>IS 5884:1995</td>
</tr>
<tr>
<td>Jacquard</td>
<td></td>
</tr>
</tbody>
</table>

3.16 Bumpers

3.16.1
Bumpers and their mounting arrangements shall be provided on both front and rear of the vehicle, and made of Steel or impact resistant polymer or combination of both and shall meet the requirement of the relevant standard as and when notified.

3.16.2
The front and rear of the vehicle shall be protected in such a manner that in the event of a low speed collision the damage to the vehicle is minimum.

3.16.3
The edge of bumper shall be turned inwards and shall be devoid of sharp corners capable of causing injury.

3.16.4
Plastically deformable retaining elements located between the body structure and bumper shall be permitted as energy absorbers in additional to the steel sheet component.

3.16.5
Suitable gap between the bumper and the body shall be given such that in the event of a frontal or rear collision the body panels are subjected to minimum damage.
3.17 Corrosion Protection

3.17.1 The quality of the surface treatment shall be tested according to the test methods specified in JIS D0202 or equivalent BIS standard. (General Rules of Coating Films for Automotive Parts or equivalent Indian Standards using test panels.) The minimum quality requirements in table below shall be met for test criteria specified in Para. 9 of JIS D0202.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Condition –Appearance</td>
<td>There must be no surface roughness, pin holes or other harmful defects.</td>
</tr>
<tr>
<td>Corrosion Resistance</td>
<td>Iron Phosphate treatment 72 (Hrs)</td>
</tr>
<tr>
<td></td>
<td>Zinc Phosphate treatment 96 (Hrs)</td>
</tr>
<tr>
<td>Water and moisture Resistance</td>
<td>Iron Phosphate treatment 36 (Hrs)</td>
</tr>
<tr>
<td></td>
<td>Zinc Phosphate treatment 48 (Hrs)</td>
</tr>
<tr>
<td>Oil Resistance (40 Deg. 24 hrs)</td>
<td>No swelling, flaking, peeling, cracking, film softening nor appreciable change in lustre or colour</td>
</tr>
<tr>
<td>Volatile Oil Resistance (Gasoline) (24 hrs)</td>
<td>No swelling, flaking, peeling, cracking, film softening nor appreciable change in lustre or colour</td>
</tr>
<tr>
<td>Pencil Scratch Test</td>
<td>Shall resist HB or Harder</td>
</tr>
<tr>
<td>Checker Mark : No of sections in which film remains intact (without peeling off)</td>
<td>Grade 1</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

3.18 Protection against fire risk

3.18.1 Engine Compartment

3.18.1.1 No flammable sound proofing material or material liable to impregnated with fuel, lubricant or any combustible material shall be used in the engine compartment unless the material is clad by an impermeable sheet.

3.18.1.2 Precaution shall be taken, either by suitable layout of the engine compartment or by provision of drainage orifices to avoid as far as possible, the accumulation of fuel, lubricants or any other combustible material in any part of the engine compartment.
3.18.1.3 A partition of heat-resistant material shall be fitted between the engine compartment and any other source of heat (e.g. a retarder designed to absorb energy liberated when descending along gradient). Any device designed for employing warm water shall be precluded from this requirement. All mounting clips gaskets etc. used in conjunction along with the device shall be fire resistant.

3.18.2 **Fuel filler apertures**

3.18.2.1 Fuel filler apertures shall be accessible only from exterior of the vehicle.

3.18.3 **Fuel Tank**

3.18.3.1 Position of filler aperture shall be as fitted by the vehicle manufacturer. Alteration/ relocation of the fuel tank shall not be permitted unless approval obtained from the vehicle manufacturer and test agency.

3.18.3.2 No part of the fuel tank shall project beyond the overall width of the body work.

3.18.4 **Fuel feed System**

3.18.4.1 Alterations shall not be permitted on fuel feed system provided by the vehicle manufacturer. The Coach builder shall obtain Type approval for carrying out any modification prior to any alteration if deemed necessary.

3.18.4.2 No apparatus used for the fuel feed shall be placed in the driver's compartment or the passenger compartment.

3.18.4.3 Fuel lines and all other parts of the fuel feed shall be accommodated in the vehicle where they have the optimum protection.

3.18.4.4 It is recommended that twisting and bending movements and vibrations of the vehicle or the power unit do not subject the fuel lines to abnormal stress. It is also recommended that the union of pliable pipes with rigid parts of fuel feed system must be so designed and constructed as to remain leak proof in various condition of use of the vehicle despite ageing, twisting or bending movements, or vibration of the vehicle structure or power unit. Fuel leaking from any part of the engine system be able to flow away freely to the road surface, but never into the exhaust system.
3.18.5 Fire extinguishers

3.18.5.1 The vehicle shall be equipped with one or more Fire extinguishers, one being near to the driver’s seat.

3.18.5.2 Type and the minimum number of extinguishers to be provided shall be as follows:

<table>
<thead>
<tr>
<th>Total Capacity of extinguisher</th>
<th>Standard bus</th>
<th>Midi & Mini bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type I</td>
<td>Type II</td>
</tr>
<tr>
<td>4 kg rating for Standard Bus</td>
<td>Minimum two fire extinguisher of 2 kg each, totaling to 4 kg</td>
<td>Minimum two fire extinguisher of 2 kg each, totaling to 4 kg</td>
</tr>
<tr>
<td>(Other than Midi and Mini Buses) & 2 kg rating for Midi and Mini Buses)</td>
<td>21A 113B CEN Std EN 3 Pt.1</td>
<td></td>
</tr>
</tbody>
</table>

Note: Fire extinguishers shall comply with IS : 13849 or IS : 2171 as amended from time to time, as may be applicable.

3.18.5.3 Halogenated hydrocarbon type of extinguisher shall not be used as extinguishant.

3.18.5.4 The Fire extinguishers shall be secured against tampering and shall be kept in lockers or behind breakable glass. The location shall be marked clearly.

3.19 First aid Equipment

3.19.1 First Aid Kits containing items notified under Rule 138 (4) (d) of CMVR 1989 shall be provided.

3.19.2 Space shall be provided for fitting more than one first-aid kit.

3.19.3 The First aid kits shall be secured against tampering and shall be kept in lockers or behind breakable glass. The location shall be marked clearly.
3.20 **Modification of Chassis and / or Chassis related Components**

3.20.1 Alterations shall not be permitted on the chassis or any of its aggregates or components. Any modifications shall call for fresh type approval of the design and the prototype.

3.21 **A.C. System**

3.21.1 The A.C. system shall meet the technical and safety requirements as and when notified.

3.22 **Interior Noise**

3.22.1 The interior noise level shall be in accordance with AIS-020 as amended from time to time.
4.1 Lighting, Signalling and Indicating Systems -

4.1.1 External

4.1.1.1 External lighting, signalling and indicating systems of the bus shall comply with the Rules laid down of the Central Motor Vehicle Rules, 1989, and as amended from time to time.

4.1.1.2 All equipment and devices shall be Type Approved

4.1.2 Internal

4.1.2.1 Lighting, signalling and indicating systems shall provide adequate illumination inside the bus for the safe operation by the driver and the passengers, during darkness and other conditions of reduced visibility.

4.1.2.2 Position of illumination devices

4.1.2.2.1 The following lamps are to be placed on the roof of the bus, above the head of the observer -
- Cab lamp or courtesy lamp
- Passenger area lamps

4.1.2.2.2 The following lamps are to be placed at the foot level -
- Exit lamps

4.1.2.2.3 The following lamps are to be placed inside the compartment/unit/control
- Locker lamp
- Electrical distribution centre lamp - Instrument lighting
- Control unit lamps

4.1.2.3 Type of Bulbs for lamp Assemblies

4.1.2.3.1 The following lamp assemblies can be illuminated either by incandescent bulbs or L.E.D (Light Emitting Diodes) -
- Tell-Tale lights
- Instrument lights
- Control unit lamps
4.1.2.3.2 The following lamp assemblies can be illuminated by incandescent bulbs -
- Electrical distribution centre lamp
- Locker lamp

4.1.2.3.3 The following lamp assemblies can be illuminated by incandescent bulbs or fluorescent bulbs -
- Entrance lamps
- Cab lamp or courtesy lamp
- Passenger area lamp

4.1.2.4 Photometric requirements

4.1.2.4.1 Lighting requirements of the lighting, signalling and indicating systems for the following sub groups:-
- Dash Board Tell tale lighting/Control lighting
- Driver Cabin lighting
- Passenger Compartment lighting
- Other Area lightings

4.1.2.4.1.1 Dash Board Tell tale lighting/Control lighting

4.1.2.4.1.1.1 Lamps falling in this category -
- Instrument lighting
- Tell-tale lighting
- Control unit lamps

4.1.2.4.1.1.2 The illumination by lighting devices lighting up dash board instruments, tell tales and controls shall be discreet and shall not disturb the driver when driving in the dark.

4.1.2.4.1.1.3 The strength of the instrument lighting shall be capable of regulation through a rheostat or any other suitable means.

4.1.2.4.1.1.4 The illumination intensity of all the lamps provided for lighting instruments, controls inside the cabin shall not be more than 10 candelas and shall not be less then 2 candelas.

4.1.2.4.1.2 Driver Cabin lighting

4.1.2.4.1.2.1 The following lamps fall in this category:
- Cab lamp or courtesy lamp
- Locker lamp
- Electrical distribution lamp

70/122
4.1.2.4.1.2.2 The illumination by lighting devices lighting up the cabin interior should be sufficient enough to clearly distinguishing each component part of the cabin. Driver should be in a position to read signages written on the walls, door of the cabin. He should also be in position to read any instructions printed on paper.

4.1.2.4.1.2.3 The luminous flux of all the lamps provided for cabin lighting to light up the equipment, components and to read, shall not be less than 100 lux and shall not be more than 150 lux at the point of observation and as seen by the driver.

4.1.2.4.1.2.4 The driver’s compartment shall be provided with illumination through separate circuit.

4.1.2.4.1.3 Passenger Compartment lighting

4.1.2.4.1.3.1 The following lamps fall in this category:-

- Exit lamps
- Passenger area lamps

4.1.2.4.1.3.2 The illumination by lighting devices lighting up the passenger area should ensure reading of signages inside the passenger area and other important signs like emergency signs. The illumination should light up handles, latches, knobs, rods, hand-holds, etc facilitating easy access to passenger. It should be adequate for reading printed matter like newspaper.

4.1.2.4.1.3.3 The illumination of these lamps shall not be less than 150 lux, when measured at any seating location of the bus and at the eye level of the seated passenger, i.e at 620 mm above the seat base.

4.1.2.4.1.3.4 At least two night lights spaced at 2 m to each other shall be provided in the passenger compartment. The interior lighting shall be designed such that the glare and reflections caused does not affect the driver.

4.1.2.4.1.4 Other Area Lightings

4.1.2.4.1.4.1 Luggage hold area lighting: Every luggage hold shall be provided with light fittings for illuminating the hold when in use.

4.1.2.4.1.4.2 Destination panel lighting: The front, rear and side (optional) of the vehicle shall be illuminated and the inscription on the panel/board shall be visible at a distance of 30 metres.

4.1.2.4.1.4.3 Side marker lamp: These are to be mounted on the side of the vehicle and shall be of amber colour. They shall be mounted on a height of 800-1200mm above the ground.
4.2 Type Approval

4.2.1 The number of lamps, their position, type and wattage used shall be type approved.

4.2.2 All the above information shall be incorporated in the technical specification submitted for the type approval.
CHAPTER : 5
ELECTRICAL EQUIPMENT AND WIRING

5.1 Electrical cables

5.1.1 All cables used shall be BIS marked. Copper conductors with fire retardant PVC insulation and able to withstand working temperature upto 70°C shall be used.

5.1.2 All the cables shall be ducted and secured at suitable places in such a manner that during normal use of vehicle the cables are not subjected to any tension, stretching, nicking, cutting, abrasion or chaffing.

5.1.3 The conductor cross section shall be selected to carry the rated current as given below:-

<table>
<thead>
<tr>
<th>Specification for Low Tension Wire for Automotive Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Current (A)</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>28</td>
</tr>
</tbody>
</table>

5.2 Fuse

5.2.1 Every electrical circuit shall be provided with fuse designed for the circuit. In case of multiple circuits a common fuse shall be permitted, subjected to maximum current capacity of 15 Amps. per circuit.

The current carrying capacity of the fuse shall be :

\[
\text{Rated Current of Fuse} = 1.5 \times \text{Load Current of the Electrical Equipment}
\]

5.3 Terminals, Connectors & Elements

5.3.1 End terminations: All the ends shall be suitably crimped with lugs /soldered or fixed so as to withstand vehicle vibrations.

5.3.2 The interconnection shall be through couplers/junction boxes/ terminal blocks.
5.3.3 Weatherproof connectors shall be used for external areas which are exposed to atmosphere to avoid water/moisture ingress during use.

5.4 Safety requirements

5.4.1 Use of relays and other electrical elements shall be adopted where the current rating of the switches is not adequate.

5.4.2 The additional circuits shall not draw current more than specified by the manufacturer.

5.4.3 Where the voltage exceeds 100 Volts RMS (Root Mean Square) in one or more electrical circuit, a manually operated isolation switch which is capable of disconnecting the circuit(s) from the main electrical supply shall be provided and shall be located inside the vehicle in a location easily accessible to the driver.

5.4.4 No circuit provided by the vehicle manufacturer or type approved shall be modified.

5.4.5 The isolation circuit shall have provision of bypassing circuits supplying mandatory external vehicle lighting.

5.4.6 Electrical cables shall be located such that no part can make contact with any fuel line or exhaust system subjected to excess heat. Suitable special insulation shall be provided where such electrical circuits are necessary.

5.4.7 Electrical conductors shall meet the requirement for flame resistance specified in para 6.8.

5.5 Batteries

5.5.1 All batteries shall be well secured and easily accessible.

5.5.2 The battery compartment shall be separated from the passenger compartment and driver’s compartment. It shall be well ventilated.

5.5.3 Battery terminals shall be protected against short circuit risk.

5.5.4 Isolation Switch: A manually operated isolation switch, which is capable of disconnecting the battery terminal from the electrical circuit, shall be provided.
5.6 Type Approval

5.6.1 The circuit diagram for the bus shall be type approved. Calculations in arriving at conductor size, fuse rating, switch rating shall form a part of type approval requirement. The number of lamps, their position, type and wattage used shall also be type approved.

5.6.2 All the above information shall be incorporated in the technical specification submitted for the type approval.

Table
Standards Related to Electric Equipment & Wiring

<table>
<thead>
<tr>
<th>Description</th>
<th>Standard No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables for Motor Vehicles</td>
<td>IS 2465 : 1984*</td>
</tr>
<tr>
<td>Cable Termination for Automobile Wiring Blade Type Connectors</td>
<td>IS 8395 : 1977 Part I*</td>
</tr>
<tr>
<td>Cable Termination for Automobile Wiring Bullet & Tube Type Connectors</td>
<td>IS 8395 : 1977 Part II*</td>
</tr>
<tr>
<td>Low Voltage Fuses</td>
<td>IS 13703 : 1993 Part I*</td>
</tr>
<tr>
<td>Colour Code of Electrical Wiring</td>
<td>IS 13313 : 1991 *</td>
</tr>
<tr>
<td>Cartridge Fuse links for Automobiles</td>
<td>IS 2577 : 1974*</td>
</tr>
<tr>
<td>Porcelain (Molded) Fuse links for Automobiles</td>
<td>IS 7528 : 1974*</td>
</tr>
<tr>
<td>Fuses for Automobiles</td>
<td>IS 4063 : 1982*</td>
</tr>
<tr>
<td>Piano key type switches for use in automobiles</td>
<td>IS 9433 : 1980*</td>
</tr>
<tr>
<td>Automobile Lamps</td>
<td>IS 1606 : 1979*</td>
</tr>
<tr>
<td>Electrical Circuits</td>
<td>IS 14381 : 1996*</td>
</tr>
</tbody>
</table>

*as amended from time to time.
CHAPTER : 6
TEST METHODS

6.0 Design of Bus Bodies

All bus body builders may adopt suitable tools to design bus bodies for sufficient strength and for all the performance parameters specified in the code. Bus Body Builders may have their own analysis of bus body structures, done by use of Finite Element Analysis (FEA) or any other analytical tool to ensure sufficient bus body strength, for specific compliance to the strength requirements given at Clause 6.1. FEA is a detail design tool which basically saves time in designing and produces more accurate results. It is therefore recommended that bus body builders use design tools such as FEA, for verifying the strength of the bus body superstructure, either by themselves or from the authorised test agencies notified under Rule 126 of CMV(A)R, 1989. FEA would greatly help in assessing physical compliance to 6.1 at the design stage itself.

6.1 Body Structure Strength Test

All single deck buses of Type –II and Type – III category excluding Mini buses, shall meet the requirements specified in para 6.1.1.

6.1.1 Test Requirements

6.1.1.1 The body structure of the vehicle shall be of sufficient strength, to ensure that during and after it has been subjected to the test specified in the para 6.1.2.

6.1.1.2 No displaced parts of the vehicle intrudes into the residual space specified in para 6.1.1.3, (Ref. Fig. 1 and Fig.2.) and

6.1.1.3 No part of the residual space projects outside the deformed structure.

- The residual space means the space to be preserved in the passenger compartment during and after the structure has been subjected to roll over test. The space is defined as the volume within the passenger compartment when swept by a transverse plane defined in Fig. 1 is moved in straight line or lines such that it passes through the "R" points of all the passenger seats (from rear through intermediate to foremost seat illustrated in Fig. 2)

- For the purpose of above rule the "R" point defined in Fig. 2 shall be assumed to be 500 mm above the floor under the passenger’s feet, 300 mm from inside of the side of the vehicle and 100 mm in front of the seat back in the centreline of the outboard seats.

6.1.1.4 The requirements of Para 6.1.1.3 shall apply to the vehicle including all its structural parts members, panels and all projecting parts such as
luggage racks, ventilation ducts, equipment etc. However this shall preclude the following:

- Intrusion of a structural member (Fig. 3)
- Intrusion of a conduit (Fig. 4)
- Intrusion of rear corner seats (Fig. 5)
- Intrusion of Wheel hump (Fig. 6)

6.1.1.5 In case of an articulated vehicle each part of the vehicle shall comply with the requirements specified in para 6.1.1.1.

6.1.2 Test Method

6.1.2.1 Each type of vehicle shall be subjected to the Roll Over Test on complete vehicle or on a body section (s) representative of the vehicle specified in para 6.1.4 and para 6.1.5 or alternate method approved by the test agency as directed in rule 126 of CMVR.

6.1.3 Acceptance Criteria

6.1.3.1 If the body structure tested meets requirement defined in Para 6.1.1 then the structure shall be considered to comply with the requirement.

6.1.4 Roll-Over Test On A Complete Vehicle

6.1.4.1 Test Conditions

6.1.4.1.1 While the vehicle need not be fully finished condition, it shall be representative of production vehicles in respect of unladen kerb mass, centre of gravity and distribution of mass as declared by the manufacturer.

6.1.4.1.2 Driver and passenger seats shall be placed with their backs, if adjustable, in their most upright position. The height of the seats, if adjustable shall be at the highest position.

6.1.4.1.3 Every door and opening window of the vehicle shall be closed and latched but not locked. Windows and glazed bulkheads or screens may be glazed at the applicant’s discretion. If they are unglazed, an equivalent weight shall be imposed at the appropriate positions.

6.1.4.1.4 Tyres shall be inflated to the pressure prescribed by the vehicle manufacturer and, if the vehicle has a pneumatic suspension (air Spring) system, the pneumatic spring air pressure shall conform to vehicle manufacturer recommendation. Any automatic levelling system shall be adjusted with the vehicle on a flat, horizontal surface to the level specified by the manufacturer. Shock absorber shall operate normally.
6.1.4.5 Fuel, battery acid and other combustible, explosive or corrosive material may be substituted by other material, provided that conditions prescribed in para 6.1.4.1.1 above is met.

6.1.4.6 The impact area shall consist of concrete or other rigid material.

6.1.4.2 Test Procedure (see Fig. 7)

6.1.4.2.1 The vehicle shall be placed on a platform in order to be rolled over on one side. This side for the roll over shall be the weaker of the two sides, as brought out during design type approval stage.

6.1.4.2.2 The position of the vehicle on the platform shall be such that when the platform is horizontal:

- The axis of rotation is parallel to the longitudinal axis of the vehicle,
- The axis of rotation is 0 –200mm from the vertical step between the two levels,
- The axis of rotation is 0 –100mm from the side of the tyre at the widest axle,
- The axis of rotation is mm below the 0 –100mm horizontal sitting plane on which the tyre stands and
- The difference between the height of the horizontal sitting plane and the horizontal lower plane on which impact takes place shall not be less than 800 mm.

6.1.4.2.3 Means shall be provided to prevent the vehicle moving along the longitudinal axis.

6.1.4.2.4 The test apparatus shall prevent the tyres from sliding sideways in the direction of the roll over by means of side walls.

6.1.4.2.5 The test apparatus shall ensure the simultaneous lifting of the axles of the vehicles.

6.1.4.2.6 The vehicle shall be lifted without rocking and without dynamic effects until it rolls over. The angular velocity shall not exceed 5 degree per second (0.087 rad/sec).

6.1.4.2.7 High speed photography, deformable templates or other suitable means shall be used to determine that the requirement of Para 6.4.1.1 has been met. This shall be verified at not less than two positions, nominally at the front and the rear of the passenger compartment, the exact positions being at the discretion of the test agency. Template shall be fixed to substantially non-deformable parts of the structure.
6.1.5 Roll-Over Test on a Body Section

6.1.5.1 The test requirements, test procedure and acceptance criteria shall be as per the procedure as and when notified.

6.2 Stability Test

6.2.1 Test Requirements

6.2.1.1 When the surface on which the vehicle stands were tilted to both sides in turn at an angle of 28 degrees from the horizontal the vehicle shall not overturn.

6.2.2 Test Condition

6.2.2.1 For the purpose of test the vehicle, the unladen vehicle with addition of:

6.2.2.1.1 Load equal to 75 kg (68 kgs standard mass of passenger + 7kgs luggage) shall be placed on each passenger and crew seat. Where vehicle is designed to carry standee passengers a load of 75 Kg. is placed with its centre of gravity at a height of 875 mm from the floor. The load shall be uniformly distributed.

6.2.2.1.2 Where vehicles are designed and constructed to carry luggage on the roof, a uniformly distributed mass not less than of 150 kg/m² representing the luggage, shall be secured to the roof.

6.2.2.1.3 Alternatively a calculation method may be used to prove that the vehicle will not overturn under conditions specified in para 6.2.2.1. The Calculation method shall be approved by the test agency. The coach builder shall establish the validity of the calculation method to the satisfaction of the Test Agency on the basis of comparative test with a similar vehicle.

6.2.2.2 Test Method

6.2.2.2.1 The vehicle shall be subjected to test on a tilt test rig. Height of step used to prevent the vehicle from slipping side ways on the test rig shall not be greater than two third of the distance between the surface on which the vehicle stands and part of the rim of the wheel which is nearest to the surface in the untilted position. Ref. Fig. 8.

6.2.2.3 Acceptance Criteria

6.2.2.3.1 The stability of a vehicle shall be considered to comply with the requirement if the angle at which overturning occurs is greater than 28 degrees from the horizontal.
6.3 **Impact Strength for Bumpers**

6.3.1 The front and rear bumpers of the vehicle shall meet the requirements prescribed in relevant standard as and when notified.

6.4 **Seat Requirements**

6.4.1 **Performance and Strength Requirements for Driver / Co-driver Seat**

6.4.1.1 The driver / co-driver seat shall meet the requirements specified in AIS-023, as amended from time to time.

6.4.2 **Passenger Seat requirements**

6.4.2.1 The passenger seats shall meet the requirements specified in AIS-023, as amended from time to time.

6.5 **Power Operated Service Door**

6.5.1 **Test Requirements**

6.5.1.1 The construction and control system of every power operated service door be such that a passenger is unlikely to be injured by the door or trapped between the door while closing. The door system shall meet the requirements defined in para 6.5.1.2 & para 6.5.1.3.

6.5.1.2 The closing of the door at the measuring point is resisted by the clamping force not exceeding 150 N, the door shall reopen automatically to its fullest extent and remain open until a closing control is operated using a test bar of section 60 mm High 30 mm wide and rounded at corners (R=5 mm). The clamping force may be measured by any method specified by the test agency. The peak force may be higher than 150 N for a short time provided that it does not exceed 300 N. Alternately if the door can be easily reopened by hand, if the clamping force measure does not exceed 80 N when the door is between 30 and 120 mm ajar, and 150 N when is between 120 mm and 400 mm ajar with the energy supply on.

6.5.1.3 Whenever the doors are closed onto an object; the door reopens automatically to its fullest extent and remain open until a closing control is operated or the wrist or finger can be extracted without risk or injury to the passenger using test bar specified below:

- Test bar shall be so constructed such that it shall be tapered at one end over a length of 300 mm from 30 mm to a thickness of 5 mm.
6.5.2 **Guidelines for measuring the closing forces of Power operated Doors**

6.5.2.1 The closing of power operated door is a dynamic process. When a moving door hits an obstacle, the result is a dynamic reaction force, the history of which (in time) depends on several factors. (e.g. the mass of the door, acceleration, dimensions).

6.5.2.2 **Definitions**

6.5.2.2.1 Closing force $F(t)$ is a time function, measured at the closing edges of the door (see para 6.5.2.3.2)

6.5.2.2.2 Peak forces F_p is the maximum value of the forces.

6.5.2.2.3 Effective force F_e is the average value of the closing force related to the pulse duration:

\[
F_e = \frac{1}{T} \int_{t_1}^{t_2} F(t) \, dt
\]

6.5.2.2.4 Pulse duration T is the time between t_1 and t_2:

\[
T = t_1 - t_2
\]

Where

- t_1 = threshold of sensitivity, where the closing force exceeds 50 N.
- t_2 = fade away threshold, where the closing force becomes less than 50 N

This relation between the above parameters is shown below (as example only)

![Diagram](image)

6.5.2.2.5 Clamping force F_c is the arithmetic mean value of the effective forces, measured at the same measuring point subsequently more times

\[
F_c = \frac{1}{n} \sum_{i=1}^{n} (F_e)_i
\]
6.5.2.3 Measurements

6.5.2.3.1 Conditions of measurement

6.5.2.3.1.1 Temperature range 10 °C - 30 °C.

6.5.2.3.1.2 The vehicle shall stay on a horizontal surface.

6.5.2.3.2 Measurement Points Shall be:

- At the main closing edge of the door,
- one in the middle of the door;
- one 150 mm above the lower edge of the door;

6.5.2.3.2.1 In case of the doors equipped with clamping prevention devices for the opening process; all the secondary closing edges of the door at the point which is considered to the most dangerous place of clamping.

6.5.2.3.3 At least three measurements shall be taken at each of the measuring points to determine the clamping force according to para 6.5.2.2.5.

6.5.2.3.4 The signal of the closing force shall be recorded by means of a low-pass filter with limited frequency of 100 Hz. Both the threshold of sensitivity and fade away threshold to limit the pulse duration shall be set at 50 N.

6.5.2.3.5 The deviation of the reading from the rated value shall not be more than ±3%.

6.6 Door Components

6.6.1 Door and door components shall meet the standard specified in Rule 124 of CMVR, door locks shall meet requirements laid out in BIS Standards, Automotive Vehicles: locking systems and door retention components - general requirement IS 14225:1995, as amended from time to time and Automotive Vehicles Window retention and release system for buses - safety requirement as specified in 13944-1995, as amended from time to time.

6.6.2 Door latch

6.6.2.1 Door handle effort to unlatch the door shall be min. 30N and 55 N max. (optional specification).

6.6.2.2 Longitudinal Load: The door latch and striker assembly when tested as defined in IS 14225:1995 shall withstand a ultimate longitudinal load of 11 KN, when in fully latched position and 4.45 KN when in secondary latched position.
6.6.2.3 Transverse Load: The door latch and striker assembly when tested as defined in IS 14225:1995 shall withstand a ultimate transverse load of 8.9 KN, when in fully latched position and 4.45 KN when in secondary latched position.

6.6.2.4 Inertia Load: The door latch when contained in the door latched system (door latch, striker assembly, outside handle, key cylinder and connecting mechanism) and in fully latched position must remain in fully latched position when subjected to inertia load of 30 g in any direction. (ECE – R-42 & SAE J 839 July 82)

6.6.3 Door Hinges

6.6.3.1 Door hinge must be capable of withstanding an ultimate longitudinal load of 1135 Kgf and Transverse load of 910 Kgf.

6.6.3.2 Longitudinal Load: Door hinge system when subjected to test defined in SAE J July 82 shall be capable of withstanding an ultimate load of 11.1 KN.

6.6.3.3 Transverse Load: Door hinge system when subjected to test defined in SAE J 934 July 82 shall be capable of withstanding an ultimate load of 8.9 KN.

6.7 Joint Strength Test

Each body panel joint shall be capable of holding the body panel to the member to which it is joined when subjected to a force of 60% of the tensile strength of the weakest joined body panel as per the test procedure given para 6.7.1.

6.7.1 Test Procedure

6.7.1.1 Preparation of the test specimen

6.7.1.1.1 If a body panel joint is 203mms long or longer, cut a test Specimen that consists of any randomly selected 203mms segment of the joint, together with a portion of the bus body whose dimensions, to the extent permitted by the size of the joined parts, are those specified in Figure 6, so that the specimen’s centerline is perpendicular to the joint at the midpoint of the joint segment. Where the body panel joint is not fastened continuously, select the segment so that it does not bisect a spot weld or a discrete fastener.

6.7.1.2 If a joint is less than 203mm long, cut a test specimen with enough of the adjacent material to permit it to be held in the tension testing machine specified in 9.1.3.
6.7.1.3 Prepare the test specimen in accordance with the preparation procedures specified in the 1973 edition of the Annual Book of ASTM Standards.

6.7.1.2 Determination of minimum allowable strength.
For purposes of determining the tensile strengths of the joined body components as follows:

a) Where the mechanical properties of a material are specified ASTM standards the relative tensile strength shall be equal to the minimum tensile strength specified in the corresponding ASTM Standards.

b) Where the mechanical properties of a material are not specified in the ASTM standards, its tensile strength of representative sample from the bus body outside the area of the joint shall be taken for reference. The testing of the material shall be in accordance with the para 6.7.1.3.

6.7.1.3 Joint Strength test

6.7.1.3.1 Grip the joint specimen on opposite sides of the joint in a tension-testing machine calibrated in accordance with Method E4, Verification of Testing Machines, of the American Society for Testing and Materials (1973 Annual Book of ASTM Standards).

Note: The testing requirements for the structural joints shall be specified separately.

6.7.1.3.2 Adjust the testing machine grips so that the joint, under load will be in stress approximately perpendicular to the joint.

6.7.1.3.3 Apply a tensile force to the specimen by separating the heads of the testing machine at any uniform rate not less than 3.2mm and not more than 9.5mm per minute until the specimen separates.

6.8 Electrical Conductor Test

6.8.1 Principle

6.8.1.1 This test consists of submitting specified test pieces of the electrical conductors, as installed in the vehicle, to a flame in order to evaluate their resistance to fire.
6.8.2 Equipment

6.8.2.1 The test equipment consists of:

6.8.2.1.1 Test Enclosure

6.8.2.1.1.1 The test enclosure consists of metallic screen with 3 faces:

- 1200 ± 25 mm height,
- 399 ± 25 mm width,
- 450 ± 25 mm depth.

The front face is open and the top and bottom is closed. The base not be metallic.

6.8.2.1.2 Heat Source

6.8.2.1.2.1 The heat source consists of a gas burner (Bunsen burner) of internal diameter between 9.5 mm and 10 mm. Its control is such that the length of the outer flame is approximately 125 mm and that of the inner flame approximately 40 mm.

6.8.2.1.2.2 The functioning of the burner is tested in the following manner: the base of the burner being horizontal, a naked copper wire of 0.71 ± 0.025 mm in diameter and having a free length of at least 100mm is introduced horizontally into the flame, at 50mm above the top edge of the wire is situated above the far vertical edge of the burner(see Fig. 9) the time necessary to melt the wire shall not exceed 6 seconds, nor be less than 4 seconds.

6.8.3 Test Pieces

6.8.3.1 The test piece is formed by a piece of conductor 600mm ± 25mm long.

6.8.4 Test Method

6.8.4.1 The test piece is held vertically and placed in the middle of the test enclosure such that its lower end is approximately 50 mm from the base of the enclosure. For the test, the base of the burner forms an angle of 45 deg. With the axis of the test piece. The distance between the burner and the test piece must be such that the inner flame just touches the centre line of the sample(see Fig. 10). The flame must be applied about 100 mm above the lower end of the test piece for a continuous period T (seconds) given by the formula:

\[T = 60 + \frac{M}{25} \]

Where M is the mass in grams of the test piece of conductor per length of 600 mm.

6.8.5 Results

6.8.5.1 The observed phenomena are recorded in the test report, notably:

- the duration of the combustion
- the length of the charred section.
6.8.6 Classification

6.8.6.1 Based on the results obtained, the material will be classified as follows:

Category 1: Combustion is self-extinguished.
 The upper end of the test piece is intact.
Category 2: Combustion is self-extinguished.
 The upper end of the test piece is charred or affected.
Category 3: Combustion is not self-extinguished.

6.8.7 Acceptance Criteria

6.8.7.1 Only Category 1 conductors are permitted.

6.9 Illumination

6.9.1 Dash Board Tell tale lighting/Control lighting

6.9.1.1 The following lamps are to fall in this category:
 - Instrument lighting
 - Tell-tale lighting
 - Control unit lamps

6.9.1.2 The illumination intensity of all the lamps provided for lighting instruments, controls inside the cabin shall not be more than 10 candelas and shall not be less then 2 candelas.

6.9.2 Cabin Lighting

6.9.2.1 The illumination by lighting devices lighting up the cabin interior -should be sufficient enough to clearly distinguishing each component part of the cabin. Driver should be in a position to read signages written on the walls, door of the cabin. He should also be in position to read any instructions printed on paper.

6.9.2.2 The following lamps are to fall in this category:
 - Cab lamp or courtesy lamp
 - Locker lamp
 - Electrical distribution lamp

6.9.2.3 The luminous flux of all the lamps provided for cabin lighting to light up the equipment, components and to read, shall not be less than 100 lux and shall not more than 150 lux at the point of observation and as seen by the driver.
6.9.3 Passenger area lighting

6.9.3.1 The illumination by lighting devices lighting up the passenger area should ensure reading of signages inside the passenger area and other important signs like emergency signs. The illumination should light up handles, latches, knobs, rods, hand-holds, etc are easy access to passenger. It should be capable of allowing for reading of printed matter like newspaper.

6.9.3.2 The following lamps are to fall in this category:-
- Entrance lamps
- Passenger area lamps

6.9.3.3 The illumination of these lamps to light up the entrance and exit for the passengers and in general to light up the passenger compartment shall not less than 150 lux and shall not be more than 200 lux at the point/place of observation.

6.9.3.4 Method of Measurement

6.9.3.4.1 For measurement of illumination requirements indicated in para 6.9.1 to para 6.9.3. The following method is to be adopted.

6.9.3.4.2 Reference para 6.9.1.2 For measurement of candela of the illuminating device, the bulbs are tested for the Photometry as per IS 1606 : 1996 and the candela values of individual bulbs on instrument light, tell tale lighting and control until lamps, shall fall within the prescribed limit.

6.9.3.4.3 Reference para 6.9.2.3 and para 6.9.3.3.
For measurement of luminous flux, a lux meter is to be employed. After switching on the individual lighting devices, in as installed condition, the lux meter shall be placed on latches, passenger hand holds, window lift larch, entry/exit doors, emergency sign, and a newspaper held by the passenger in the darkest corner of the bus, and the lux values are noted, which shall fall within the prescribed limit.

6.10 Test methods, procedures and requirements in respect of items not covered in this code shall be separately notified time to time.
Figure 1
Residual Space after Lateral Intrusion

Section A-A of the vehicle in the vertical plane of the centre-line of the inboard seats.

Figure 2
Residual Space after Longitudinal Intrusion
Figure 5
Permitted Intrusion at Rear Corner Seats View of the Prescribed Area of the Seat (Two seats at the Rear)
Figure 6
Permitted Intrusion of a Wheel Arch not extending beyond the vertical centre line of the side seat

Figure 7
Test Set up for Roll-Over Test
Figure 8
Stability Test and Tilt angle
CHAPTER : 7

TYPE APPROVAL & COP PROCEDURE

7.1 SCOPE

7.1.1 The Type Approval Procedure specified in this code is applicable to buses with a seating capacity of 13 passengers or above.

7.1.2 The requirements of this code also apply to the following vehicles except in respect of those provisions* which are not compatible with the intended use and function of these vehicles:

A. High Capacity Buses like
 i. Double Decker Bus
 ii. Articulated Bus
 iv. Double Deck Articulated Bus

B. Special Purpose Buses like-
 i. Sleeper Coach
 ii. School Bus
 iii. Tourist Bus
 iv. Prison vehicles
 v. Vehicles specially designed for the carriage of injured or sick persons (Ambulances)
 vi. Off road vehicles
 vii. Vehicle Designed for use by Police, Security and Armed Forces

* Provisions to be defined and notified separately.

7.1.3 The system for approval of Prototype (Rule 126) and Conformity to production (Rule 126A) to comply with provisions with respect to the safety, strength and technical requirements specified in the Bus body building code shall be based on the standards notified from time to time.

7.2 Procedure for Type Approval

7.2.1 The Type Approval shall be applicable to the following provisions for which compliance is sought by the vehicle manufacturer or Bus Body Builder as the case may be.

(i) Complete Vehicle Type Approval (or)
(ii) Bus Body Type Approval as a separate unit (or)
(iii) Vehicle Type Approval fitted with the Bus Body which is already type approved
(iv) Prototype Type Approval of Vehicle and other aggregates / units
7.3 **Application for Type Approval**

7.3.1 The application for type approval shall be submitted to the test agency by the Vehicle Manufacturer / Bus Body Builder, with the description of the vehicle type(s) or body type(s) or the vehicle type fitted with an already approved body. This application shall be accompanied by the following documents, as applicable to the provisions for which compliance is sought.

a) List of provisions for which compliance is sought /to be established.

b) All the relevant information specified in the format “Information on Technical Specifications” to be submitted by Bus Body Builder given in Annexure I.

c) Copies of certificates or test reports of compliance to various provisions, which may have already been obtained from other recognized Testing Agencies.

d) Copies of test reports for other models/variants, if any, which can be used for establishing compliance of the model to be type approved, with a note explaining the details.

e) Copy of certificate of incorporation of the manufacturer, if not already submitted.

f) Publications available.

7.3.2 In case of body builders, who have adopted any type tested designs provided by the chassis manufacturers, the body builder shall provide the necessary details and drawings of the chassis manufacturer, to the test agency for their consideration.

7.4 **Type Approval of safety components / sub-assemblies**

7.4.1 In addition to the safety components notified under Rule 124 of CMVR, 1989, the Type Approval of passenger seats and seat mountings, window sub-assembly, power operated service door, door components, luggage rack assembly etc shall be obtained.

7.5 **Methods of Establishing Compliance**

7.5.1 Depending upon the provision, the compliance can be established by either comparison of the values declared in the Technical Specifications with those in the provisions of CMVR, or checking the fitment of part(s) on the vehicle or by testing, as applicable. Applicability of rules, method of establishing the compliance and details of the test procedures shall be as specified in the bus body building code.
7.6 Certificate of Compliance: (Type-approval)

7.6.1 After compliance is established for all the provisions, applicable to that model/variant(s), a Certificate of Compliance consolidating all applicable provisions shall be issued by the Testing Agency. The Brief Technical Specifications as declared by the manufacturer (Brief Annexure I) shall be counter signed by the Testing Agency and shall be attached to the certificate of compliance.

7.7 Conformity of Production

7.7.1 COP shall be carried out at least once in 12 months by any of the testing agencies notified under Rule 126 of CMVR, 1989 or any other agency authorised by the government. A minimum of one unit shall be subjected to COP.

7.8 Accreditation of Bus Body Builders

7.8.1 All bus body building units shall be accredited by agencies notified by the Government. The accredited bus body building units shall meet the type approval requirements specified in para 7.2.

7.9 Non-conformity of Production

7.9.1 The accreditation granted to the Bus Body Building unit may be suspended or withdrawn in case of non-conformity as per notified procedures for facility accreditation of Bus Body Builders, by the Ministry of Shipping, Road Transport and Highways.
ANNEXURE I
(See 7.3.1 (b))

INFORMATION ON TECHNICAL SPECIFICATIONS
(To be submitted by the Vehicle Manufacturer / Body Builder to the Test Agency)

1.0 Details of Coach Builder

1.1 Builder's name & address :
1.2 Telephone No. :
1.3 FAX. No. :
1.4 E mail address :
1.5 Contact person :

1.6 Name of model and variants :

1.7 Type and General commercial description (s) :
1.8 Plant(s) of manufacture :

2.0 Vehicle Chassis Characteristics

2.1 Chassis types approved for Body installation :
2.2 Type of Control (normal control/Full forward control etc.) :
2.3 Wheel base (s) :
2.4 Number of Axles and wheels :
2.5 Chassis (overall drawing) :
2.6 Frame Type :
2.7 Cross sectional view :
2.8 Dimensions: length and width :
2.9 Position and arrangement of engine :
2.10 Dimension (in mm) (Specify drawing reference) :
2.11 Length mm :
2.12 Width mm :
2.13 Height (Unladen) mm :
2.14 Wheel base mm :
2.15 Wheel track mm :
 Front :
 Rear :

2.16 Body overhang mm :
 Front end :
 Rear end :

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>

97/122
2.17 Category of vehicle:
 2.17.1 As per IS:14272 part 1:
 2.17.2 As per IS:11852 part 2:

3.0 Body

3.1 Type of Body:
 (Type I, Type II, Type III & Type IV)

3.2 Comfort Category:
 (NDX, SDX, DLX & ACX)

3.3 Dimension drawing and photograph of the vehicle with representative body:

3.4 Range of vehicle dimension (overall):

3.5 Dimension drawing of the body depicting chassis connecting members:

3.6 Material used for construction:

3.6.1 Structure Material:

3.6.2 Size of sections:
 (List of sections as per Table 1 of Chapter 2.)

3.7 Method of construction:
 (Brief construction method)

3.8 Area for Passenger (m²):
 For seated passengers:
 For standing passengers:

3.9 Number of passengers:
 Seated:
 Standing:

3.10 Number of Passenger seats:
 (As per Seat Layout)

3.11 Passenger capacity:
 Maximum (Including driver):
 Crew (Including driver):

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
3.12 Number of Service doors :
3.13 Number of emergency exits :
3.14 Number of escape hatches :
3.15 Volume of luggage compartments (m³) :
3.16 Area of luggage Transportation on roof (m²) :

4.0 Clearance
4.1 Minimum road clearance :
4.2 Road clearance from floor (for buses) :
4.3 Approach angle :
4.4 Departure Angle :
4.5 Ramp-over along :

5.0 Weights
5.1 Vehicle kerb weight kg :
 Front axle :
 Rear axle :
 Total :
5.2 Gross vehicle weight kg :
5.3 Maximum permissible axle weights kg
 Front axle
 Rear axle
5.4 Reference mass kg :

6.0 Max. stable inclination
 Left :
 Right :

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No. (indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>

99/122
7.0 Tyres

7.1 No. and arrangement of wheels:
 Front:
 Rear:
 Other:

7.2 Inflation pressure – Unladen:
 Front:
 Rear:
 Other:

7.3 Inflation pressure – Laden:
 Front:
 Rear:
 Other:

8.0 Body Panels

8.1 Outer Panels:
8.1.1 Material:
8.1.2 Thickness:

8.2 Inner Panels:
8.2.1 Material:
8.2.2 Thickness:

8.3 Roof Panels:
8.3.1 Material:
8.3.2 Thickness:

8.4 Floor Panels:
8.4.1 Material:
8.4.2 Thickness:
8.4.3 Type of anti-slip coating:

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
9.0 Service Doors

9.1 No. of Service Doors :
9.2 Position of Service Doors :
9.3 Dimension of Service Door :
 - Front Height :
 Width :
 - Rear Height :
 Width :
 - Middle Height :
 Width :

10.0 Emergency Exit

10.1 No. of Emergency Doors :
10.2 Position of Emergency Doors :
10.3 Dimension of Emergency Door :
 - Ist Height :
 Width :
 - IInd Height :
 Width :

11.0 Emergency Windows

11.1 No. of Emergency Windows :
11.2 Position of Emergency Windows :
11.3 Area (HxW in sq. m) :

12.0 Escape Hatch

12.1 No. of Emergency Hatches :
12.2 Position of Emergency Hatches :
12.3 Area (HxW in sq. m)

13.0 Steps

13.1 Height of Ist Step :
13.2 Height of Other Steps :
13.3 Depth of steps :

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
14.0 Floor:
14.1 Floor Height from the ground (unladen):
14.2 Slope of floor:

15.0 Gangway
15.1 Height:
15.2 Width (diameter of gauging device – lower cylinder):
15.3 Width (diameter of gauging device – upper cylinder):

16.0 Handrails & Handholds
16.1 Position (attach dimension layout):
16.2 No. of Handholds:
16.3 Diameter of Handholds:
16.4 Type of anti-slip coating / covering:

17.0 Stepwell Guard:
17.1 Height from the floor:
17.2 Projection from the side wall:

18.0 Passenger Seats:
18.1 Seat Layout:
18.2 Seat width:
18.3 Width of available space for one seating position:
18.4 Height of backrest:
18.5 Width of Armrest:
18.6 Depth of Seat cushion (base):
18.7 Seat Spacing:
18.8 Seat base height:
18.9 Torso angle:
18.10 Seatbase thickness:
18.11 Seat back thickness:
18.12 Clearance space for seated passengers facing partition:
18.13 Free Height over seating position:

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
19.0 Cabin Luggage Rack :
19.1 Width from side wall :
19.2 Height from Roof :

20.0 Driver Partition :
20.1 Dimension of partition with respect to rear edge of driver seat :
(rear most position of driver seat)

21.0 Driver Area :
21.1 Width from the right side wall :
21.2 Distance of driver partition from the driver seat back :
21.3 Distance from H-point to Roof Top :
21.4 Distance between Heel Point and H-Point :
21.5 Distance of H-Point from Floor :
21.6 Distance of lower end of steering wheel from driver seat back :
21.7 Thigh clearance of Steering Wheel :

22.0 External Projections
22.1 Ornaments :
22.2 Projection for head light :
22.3 Radiator grills (Applicable of on external surface) :
22.4 Gap between individual elements :
22.5 Radius of curvature of individual element :
22.6 Body Panel (In case of radius of curvature of folds in body panels are less than
2.5 mm the scaled drawing of folds contour and H value as per Annex A of
SS29/IS 13942 is required (to be submitted) :
22.7 Radius of curvature of lateral Rain/Air deflector :
 Hinges :
 Handles :

23.0 Power Operated Service door
23.1 Make & identification :
23.2 Name of the producer :

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
23.3 Position of control:

24.0 **Automatic Service door**

24.1 Make & identification:
24.2 Name of the producer:
24.3 Position of controls:
24.4 Control Circuit (schematic diagram):

25.0 **Emergency Door – Warning Device**

25.1 Make & identification:
25.2 Name of the producer:
25.3 Position of device:

26.0 **Door locks and hinges**

26.1 Doors:
26.2 No. of doors:
26.3 Position and type of door:

26.4 Door lock:
26.4.1 Name of manufacturer:
26.4.2 Identification mark:

26.5 Door hinge:
26.5.1 Name of manufacturer:
26.5.2 Identification mark:

27.0 **Hood latch**

27.1 Name of manufacturer:
27.2 Type:
27.3 Identification mark:

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>

104/122
28.0 Safety glass

28.1 Front wind shield (laminated):
 - Make and identification:
 - Type (flat/curved, clear/tinted):
 - Thickness mm:
 - No. of pieces:
 - Radius of curvature (If curved):

28.2 Side Windows:
 - Make and identification:
 - Type (flat/curved, clear/tinted, toughened):
 - Thickness mm:
 - Radius of curvature (If curved):

28.3 Rear Window:
 - Make and identification:
 - Type (flat/curved, clear/tinted, toughened):
 - Thickness mm:
 - Radius of curvature (If curved):

29.0 Rear view mirror

29.1 Left:
 - Name of producer:
 - Type:
 - Dimension & radius of curvature:

29.2 Right:
 - Name of producer:
 - Type:
 - Dimension & radius of curvature:

29.3 Inside:
 - Name of producer:
 - Type:
 - Dimension & radius of curvature:

29.4 Sketch showing mounting arrangement of mirrors:

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
30.0 Wind Screen Wiper

30.1 Type :
30.2 No. of wipers :
30.3 Wiper motor :
30.3.1 Name of manufacturer :
30.3.2 Type and identification :
30.3.3 Rated voltage :
30.3.4 Frequency of wiping :
30.4 Wiper arm :
30.4.1 Length :
30.4.2 Manufacturer and Identification :
30.5 Wiper blade :
30.5.1 Length :
30.5.2 Manufacturer and Identification :
30.6 Rubber material :
30.6.1 Type of fixing (as per IS:7827) :
30.6.2 Drawing indicating the seat back angle, seat travel, H point, Rake angle ,F dimension And steering wheel position
(Ref: document ARAI005CMVR101(2) December 1992):

31.0 Wind Screen Washer

31.1 Name of producer :
31.2 Type :
31.3 Number of nozzles :
31.4 Spray Area :

32 Equipment for occupant's safety
32.1 Driver Seat belt :
32.1.1 Name of producer :
32.1.2 Type :
32.1.3 Number :
32.2 Driver Seat belt anchorage :
32.2.1 Name of producer :
32.2.2 Type :
32.2.3 Number :

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
32.3 Head restraint:
32.3.1 Name of producer:
32.3.2 Type:
32.4 Passenger Seat:
32.4.1 Name of producer:
32.4.2 Type:
32.4.3 Frame structure Material:
32.4.4 Section size:
32.4.5 Pad material:
32.4.6 Upholstery:

33.0 Bumper
33.1 Size:
 Front:
 Rear:
33.2 Projection:
33.3 Clearance between bumper & body:

34.0 Fuel filler
34.1 Aperture:
34.2 Position:

35.0 Fire Extinguisher
35.1 Number:
35.2 Type:
35.3 Capacity:
35.4 Name of Producer:

36.0 First Aid Equipment
36.1 Number:
36.2 Contents:

37.0 Towing devices
37.1 Type:
37.2 Name of manufacturer:
37.3 Capacity:

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>

107/122
38.0 Number Plate lamp
 38.1 Name of producer :
 38.2 Type and Identification :
 38.3 Number and colour :

39.0 Tail lamp
 39.1 Name of producer :
 39.2 Type and Identification :
 39.3 Number and colour :

40.0 Parking lamp
 40.1 Front :
 40.1.1 Name of producer :
 40.1.2 Type and Identification :
 40.1.3 Number and colour :
 40.2 Rear :
 40.2.1 Name of producer :
 40.2.2 Type and Identification :
 40.2.3 Number and colour :

41.0 Stop lamp
 41.1 Name of producer :
 41.2 Type and Identification :
 41.3 Number and colour :

42.0 Reversing lamp
 42.1 Name of producer :
 42.2 Type and Identification :
 42.3 Number and colour :

43.0 Direction indicator
 43.1 Front :
 43.1.1 Name of producer :
 43.1.2 Type and Identification :
 43.1.3 Number and colour :

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
43.2 Rear:
43.2.1 Name of producer:
43.2.2 Type and Identification:
43.2.3 Number and colour:

43.3 Side:
43.3.1 Name of producer:
43.3.2 Type and Identification:
43.3.3 Number and colour:
43.3.4 Type of flasher:

44.0 Emergency signaling equipment

44.1 Front:
44.1.1 Name of producer:
44.1.2 Type and Identification:
44.1.3 Number and colour:

44.2 Rear:
44.2.1 Name of producer:
44.2.2 Type and Identification:
44.2.3 Number and colour:

44.3 Side:
44.3.1 Name of producer:
44.3.2 Type and Identification:
44.3.3 Number and colour:

45.0 Reflector

45.1 Front:
45.1.1 Name of producer:
45.1.2 Type and Identification:
45.1.3 Number and colour:
45.1.4 Area:

45.2 Rear:
45.2.1 Name of producer:
45.2.2 Type and Identification:
45.2.3 Number and colour:
45.2.4 Area:

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
45.3 Side :
45.3.1 Name of producer :
45.3.2 Type and Identification :
45.3.3 Number and colour :
45.3.4 Area :

46.0 Top light

46.1 Name of producer :
46.2 Type and Identification :
46.3 Number and colour :

47.0 Internal Lighting & Illumination

47.1 Driver Cab lighting :
47.1.1 Type :
47.1.2 Name of producer :
47.1.3 Number :
47.1.4 Illumination intensity :

47.2 Passenger Compartment Lighting

47.2.1 Type :
47.2.2 Name of producer :
47.2.3 Number :
47.2.4 Illumination intensity :

47.3 Other Area Lighting

47.3.1 Type :
47.3.2 Name of producer :
47.3.3 Number :
47.3.4 Illumination intensity :

48.0 Electrical Circuit

48.1 Circuit Diagram (attach details):

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>

110/122
49.0 Electrical Cables

49.1 Name of producer :
49.2 Conductor Cross section :
49.3 Insulation Class :

50.0 Fuse

50.1 Type & Make :
50.2 Name of producer :

51.0 Master switch for electrical :

51.1 Type & Make :
51.2 Name of producer :

<table>
<thead>
<tr>
<th>Test Agency</th>
<th>Vehicle Manufacturer / Body Builder</th>
<th>Document No.(indicating also revision status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
<td>Sheet No.----- of ----</td>
</tr>
</tbody>
</table>
APPENDIX - 1
(See 1.1.56)

Cant Rail
Roof Arch Members
Vertical Pillars

Diagonals
Window Rail

‘A’ Pillar ‘B’ Pillar
Skirt Rail
Cross Bearers
Waist Rail

Body Structure – Nomenclature

112/122
APPENDIX - 2
(See 2.1.1)

Extract of Notification NO. GSR 221(E), issued by Ministry of Road Transport & Highways on 28th March 2001

(16) in rule 93,-

(a) in sub-rule (1),-

(i) or the words "shall not Exceed" the 'words and figures "shall not exceed 2.6 meters.", shall be substituted;
(ii) clauses (i) and (ii) shall be omitted;
(iii) in the Explanation, for brackets and words ",(when in operation)", the words brackets, figures and letters "rub-rail (rubber beading) having maximum thickness of 20mm on each side of the body" shall be substituted;

(b) for sub-rule(2), the following shall be substituted, namely:-

"(2) The overall length of the motor vehicle other than trailer shall not exceed -

(i) in the case of motor vehicle other than transport vehicle having not more than two axles, 6.5 meters;
(ii) in the case of transport vehicle with rigid frame having two or more axles, 12 meters;
(iii) in the case of articulated vehicles having more than two axles, 16 meters;
(iv) in the case of truck trailer or tractor trailer combination, 18 meters; (v) in the case of 3 axle passenger transport vehicles, 15m;
(vi) in the case of single articulated (vestibule type) passenger transport vehicle, 18 m. (Please see the conditions given in note below);
(vii) in the case of double articulate passenger transport vehicles, 25 meters (Please see the conditions given in note below).

Note

In the case of single articulated passenger transport vehicles of 18 meters' length and double '4 articulate passenger transport vehicles up to 25 meters, permission of the State Government shall be obtained regarding their plying on selected routes depending upon local road conditions, width, maneuverability of the vehicle in traffic, as deemed fit. These passenger transport vehicles will also be required to have a closed circuit TV system for proper visibility in and around the passenger transport vehicle by the driver to maintain safety. Intercom system shall also be provided in such passenger transport vehicle. In addition, the standing passenger will be allowed only on the lower deck of double articulated passenger transport vehicle.";
MAJOR BUS SPECIFICATIONS / FEATURES

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>TYPE OF BUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type I (Urban & City)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SERVICE DOORS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum No. of Service Doors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Minimum Width of Service Doors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Front Single Door 650 mm (Except Mini and Midi Buses. Ref. Para 2.2.1.1.7.1)</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Front Double Door 1200 mm (Except Mini and Midi Buses. Ref. Para 2.2.1.1.7.1)</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Rear door between the axles in case of rear engine 650 mm for Single Door (Except Mini and Midi Buses. Ref. Para 2.2.1.1.7.1)</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Rear Double Door 1200 mm (Except Mini and Midi Buses. Ref. Para 2.2.1.1.7.1)</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Height of Service Door</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1800 mm (Min.) (Except Mini and Midi Buses. Ref. Para 2.2.1.1.7.1)</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>1650 mm (Min.) (Except Mini and Midi Buses. Ref. Para 2.2.1.1.7.1)</td>
<td></td>
</tr>
</tbody>
</table>

(See Note under 2.2.22.1)
<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>TYPE OF BUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type I (Urban & City)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDX</td>
</tr>
<tr>
<td>2</td>
<td>WINDOWS</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Minimum Width of Windows 550 mm</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Minimum Height of Windows</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>550 mm for standard bus and 450 mm for Midi and Mini buses</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>1000 mm</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Sliding Type Window</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>GUARD RAILS</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Minimum Two Guard Rails</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>EMERGENCY EXITS</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Two Emergency Exits</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>STEPS</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Maximum Height of first step from ground</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>360 mm</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>400 mm</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Maximum Height of next step</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>250 mm</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>350 mm</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>MAXIMUM FLOOR HEIGHT</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Based on type of operation and as demanded by the States</td>
<td>✓</td>
</tr>
</tbody>
</table>

115/122
<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>TYPE OF BUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type I (Urban & City)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDX</td>
</tr>
<tr>
<td>7</td>
<td>GANGWAY</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Minimum Height (1900 mm. Except for mini and midi buses. Refer para 2.2.8.1)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Minimum Height for mini and midi buses. 1750 for Standees and 1500 for non-standees mm. Refer para 2.2.8.1</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Minimum Width</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>450 mm (Except for mini bus. Refer para 2.2.8.1)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>350 mm (Except for mini non standee bus. Refer para 2.2.8.1)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>300 mm</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>SEATS</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Seat Layout</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>2x2</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>3x2</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>2x1 (For Mini & Midi Buses, as per Para 2.2.11.2)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Seating Area/Space Per Passenger (Width X Depth)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>400x350 mm (Min.)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>450x400 mm (Min.)</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Seat Spacing</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>650 mm</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>680 mm</td>
<td>✓</td>
</tr>
</tbody>
</table>
S.No Description

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>TYPE OF BUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type I (Urban & City)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDX</td>
</tr>
<tr>
<td>1</td>
<td>Seat Base Thickness (Front x Rear)</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>90 x 60mm (Min.)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>110 x 80 mm (Min.)</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>130 x 100 mm (Min.)</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>Seat Back Thickness</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>25 mm</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>50 mm</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>75 mm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Type of Seat Back</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>Fixed</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Reclining</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>DESTINATION BOARD</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>Minimum No. of Destination Board</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>Three</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>Two</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>PAD MATERIAL (Recommended)</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>Fibre glass / Polymer moulded</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>PU Foam</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>Rubberised coir</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>Latex foam</td>
<td>✓</td>
</tr>
<tr>
<td>20</td>
<td>Moulded PU Foam</td>
<td>✓</td>
</tr>
<tr>
<td>S.No</td>
<td>Description</td>
<td>TYPE OF BUSES</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type I (Urban & City)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NDX</td>
</tr>
<tr>
<td>11</td>
<td>PVC Rexin</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Foam Rexin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tepstry cloth</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Velvet Cloth</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>UPHOLSTRY (Recommended)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Headrest</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Seat Arm</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Magazine Pouch</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Folding Tray For Eating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Bottle Holding Fixture</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Individual Seat Row Fans</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Air Conditioning</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Reading Lights</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cabin Luggage Carrier</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Public Address System</td>
<td>✓</td>
</tr>
</tbody>
</table>
List of Participants of the Sub-Committee Meetings *
Shri B. Bhanot, Chairman-CMVR-Technical Standing Committee

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name</th>
<th>Designation</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mr A S Lakra</td>
<td>Director Engg</td>
<td>ASRTU</td>
</tr>
<tr>
<td>2.</td>
<td>Mr Manuel Couthinho</td>
<td>Asst Supt</td>
<td>ACGL</td>
</tr>
<tr>
<td>3.</td>
<td>Mr U D Bhangale</td>
<td>Asst Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>4.</td>
<td>Brig. S R Puranik</td>
<td>Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>5.</td>
<td>Dr P R Sajanpawar</td>
<td>Sr Dy Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>6.</td>
<td>Mr A Akbar Badusha</td>
<td>Assistant Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>7.</td>
<td>Mr B Ghosh</td>
<td>Sr Dy Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>8.</td>
<td>Mr S K Raju</td>
<td>General Manager</td>
<td>Ashok Leyland</td>
</tr>
<tr>
<td>9.</td>
<td>Mr R Ramakrishnan</td>
<td>Tech Adviser</td>
<td>Ashok Leyland</td>
</tr>
<tr>
<td>10.</td>
<td>Mr C B S Menon</td>
<td>Sr Manager</td>
<td>Ashok Leyland</td>
</tr>
<tr>
<td>11.</td>
<td>Mr S K Patra</td>
<td>Asst Director (T&E)</td>
<td>ASRTU</td>
</tr>
<tr>
<td>12.</td>
<td>Mr P Arjuna</td>
<td>Executive Director</td>
<td>APSTRTC</td>
</tr>
<tr>
<td>13.</td>
<td>Mr V A Patnakar</td>
<td>DGM Tr. Engg</td>
<td>BEST</td>
</tr>
<tr>
<td>14.</td>
<td>Mr P K Samat</td>
<td>EETIB Tr. Engg</td>
<td>BEST</td>
</tr>
<tr>
<td>15.</td>
<td>Mr R M kanitkar</td>
<td>Dy Div Manager</td>
<td>Bajaj Tempo</td>
</tr>
<tr>
<td>16.</td>
<td>Dr S Padam</td>
<td>Director</td>
<td>CIRT</td>
</tr>
<tr>
<td>17.</td>
<td>Prof A V Sardesai</td>
<td>MoF-Member of Faculty</td>
<td>CIRT</td>
</tr>
<tr>
<td>18.</td>
<td>Mr P C Rao</td>
<td>Member of Faculty</td>
<td>CIRT</td>
</tr>
<tr>
<td>19.</td>
<td>Mr P Udaya Kumar</td>
<td>AMOF</td>
<td>CIRT</td>
</tr>
<tr>
<td>20.</td>
<td>Mr M L Gore</td>
<td>Member of Faculty</td>
<td>CIRT</td>
</tr>
<tr>
<td>21.</td>
<td>Mr M J Singh</td>
<td>Dev. Officer</td>
<td>DID, Min of Industries</td>
</tr>
<tr>
<td>22.</td>
<td>Mr S K Jain</td>
<td></td>
<td>DID, MOI</td>
</tr>
<tr>
<td>23.</td>
<td>Mr Dinesh Kumar</td>
<td>Manager</td>
<td>DTC</td>
</tr>
<tr>
<td>24.</td>
<td>Mr T C Madan</td>
<td>Sr Manager</td>
<td>DTC</td>
</tr>
<tr>
<td>25.</td>
<td>Mr Rakesh Arora</td>
<td>Project Director</td>
<td>District Rehabilitation Centre, New Delhi</td>
</tr>
<tr>
<td>26.</td>
<td>Mr N Menon</td>
<td>Sr Manager</td>
<td>Eicher Motors</td>
</tr>
<tr>
<td>27.</td>
<td>Mr S Venkataraman</td>
<td>Vice President</td>
<td>Hindustan Motors</td>
</tr>
<tr>
<td>28.</td>
<td>Mr M U B Rao</td>
<td>Manager-PE</td>
<td>Hindustan Motors</td>
</tr>
<tr>
<td>29.</td>
<td>Mr V K Jain</td>
<td>Sr Dev officer</td>
<td>Dept of Heavy Industry</td>
</tr>
<tr>
<td>30.</td>
<td>Mr Z A Mujawar</td>
<td>Dy General Manager</td>
<td>Mahindra & Mahindra</td>
</tr>
<tr>
<td>31.</td>
<td>Mr T G Venkataraman</td>
<td>Dy General Manager</td>
<td>Mahindra & Mahindra</td>
</tr>
<tr>
<td>32.</td>
<td>Mr V B Sankpal</td>
<td>Suppt. (R&D)</td>
<td>MSRTC</td>
</tr>
<tr>
<td>33.</td>
<td>Mr Praful Desai</td>
<td>Director</td>
<td>Neoline Enterprises</td>
</tr>
<tr>
<td>34.</td>
<td>Mr Ram Mohan</td>
<td>Consultant</td>
<td>SIAM</td>
</tr>
<tr>
<td>S.No</td>
<td>Name</td>
<td>Designation</td>
<td>Organisation</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>35.</td>
<td>Mr K K Gandhi</td>
<td>Sr Adviser</td>
<td>SIAM</td>
</tr>
<tr>
<td>36.</td>
<td>Dr Koshy Cherail</td>
<td>Asst Director</td>
<td>SIAM</td>
</tr>
<tr>
<td>37.</td>
<td>Ms Jyotika Dubey</td>
<td>Executive Officer</td>
<td>SIAM</td>
</tr>
<tr>
<td>38.</td>
<td>Mr Sumit Sharma</td>
<td>Executive Officer</td>
<td>SIAM</td>
</tr>
<tr>
<td>39.</td>
<td>Mr K S Wilkhu</td>
<td>Director (Engg&mkt)</td>
<td>Sutlej Motors Ltd</td>
</tr>
<tr>
<td>40.</td>
<td>Mr B S Devgun</td>
<td>Executive Director R&D</td>
<td>Swaraj Mazda</td>
</tr>
<tr>
<td>41.</td>
<td>Mr Ajinkya Naik</td>
<td>Executive Asst to MD</td>
<td>Sai Service Station Ltd</td>
</tr>
<tr>
<td>42.</td>
<td>Mr V L Abhyankar</td>
<td>Zonal Sales Manager</td>
<td>Tata Engg</td>
</tr>
<tr>
<td>43.</td>
<td>Mr P K Kamat</td>
<td>Div Manager</td>
<td>Tata Engg</td>
</tr>
<tr>
<td>44.</td>
<td>Mr Bharat Dhruv</td>
<td>Sr Manager</td>
<td>Tata Engg</td>
</tr>
<tr>
<td>45.</td>
<td>Mr Anupam Singh</td>
<td>Sr Manager</td>
<td>Tata Engg</td>
</tr>
<tr>
<td>46.</td>
<td>Mr K E Takavale</td>
<td>General Manager</td>
<td>Toyota Kirloskar</td>
</tr>
<tr>
<td>47.</td>
<td>Mr P N Rangan</td>
<td>Tech Adviser</td>
<td>Volvo</td>
</tr>
<tr>
<td>48.</td>
<td>Mr M N Srivastava</td>
<td>Asst Director</td>
<td>VRDE</td>
</tr>
</tbody>
</table>

Co-ordinator
Mr. A. Akbar Badusha
Sr. Assistant Director
The Automotive Research Association of India, Pune

Note: Though utmost care has been taken to include names of all the participants of Sub-Committee meetings, however, names of some of the participant might have been missed inadvertently.

* At the time of formulation of AIS-052.
APPENDIX - 5
(See Introduction)

List of Participants for the Meeting to discuss revision of
AIS-052- Code of Practice of Bus Body Design and Approval held on
30th July 2007 at ARAI *
Shri. Shrikant R. Marathe, Chairman-Automotive Industry Standards Committee

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name</th>
<th>Designation</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mr. S.M.Karlekar</td>
<td>Chief Engineer Transport</td>
<td>BEST</td>
</tr>
<tr>
<td>2.</td>
<td>Mr. S.R.Deshpande</td>
<td>Superindent (Inspector of Bodies)</td>
<td>BEST</td>
</tr>
<tr>
<td>3.</td>
<td>Mr. M.S. Sellandi</td>
<td>Jt. Managing Director</td>
<td>Metropolitan Transport Corporation(MTC), Chennai</td>
</tr>
<tr>
<td>4.</td>
<td>Mr. G.J. Moses</td>
<td>General Manager – Technical</td>
<td>Metropolitan Transport Corporation(MTC), Chennai</td>
</tr>
<tr>
<td>5.</td>
<td>Mr. S.Ramamurthy</td>
<td>General Manager - Technical</td>
<td>Metropolitan Transport Corporation(MTC), Chennai</td>
</tr>
<tr>
<td>6.</td>
<td>Mr. S.A.M. Shaik</td>
<td>Technical Officer</td>
<td>VRDE</td>
</tr>
<tr>
<td>7.</td>
<td>Mr. D.P.Saste</td>
<td>Scientist E</td>
<td>CIRT</td>
</tr>
<tr>
<td>8.</td>
<td>Mr. A. Akbar Badusha</td>
<td>Sr. Assistant Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>9.</td>
<td>Mr. S.M.Haragapurkar</td>
<td>Deputy Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>10.</td>
<td>Mr. S.S.Sandhu</td>
<td>Deputy Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>11.</td>
<td>Mr. S.Raju</td>
<td>Sr.Deputy Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>12.</td>
<td>Ms. Rashmi Urdhwareshe</td>
<td>Deputy Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>13.</td>
<td>Mr. A.S.Bhale</td>
<td>Assistant Director</td>
<td>ARAI</td>
</tr>
<tr>
<td>14.</td>
<td>Mr. K.K.Gandhi</td>
<td>Executive Director (Technical)</td>
<td>SIAM</td>
</tr>
<tr>
<td>15.</td>
<td>Mr. R. Devarajan</td>
<td>Special Director</td>
<td>Ashok Leyland Ltd.,</td>
</tr>
<tr>
<td>16.</td>
<td>Mr. C.B.S.Menon</td>
<td>Deputy General Manager</td>
<td>Ashok Leyland Ltd.,</td>
</tr>
<tr>
<td>17.</td>
<td>Mr. S.Ravishankar</td>
<td>Sr.General Manager</td>
<td>Tata Motors Ltd.,</td>
</tr>
<tr>
<td>18.</td>
<td>Mr. P.K.Banerjee</td>
<td>Asst. General Manager</td>
<td>Tata Motors Ltd.,</td>
</tr>
<tr>
<td>19.</td>
<td>Mr. N.Ilango</td>
<td>Project Manager</td>
<td>Tata Morors Ltd.,</td>
</tr>
<tr>
<td>20.</td>
<td>Mr. Z.A.Mujawar</td>
<td>General Manager</td>
<td>Mahindra & Mahindra Ltd.,</td>
</tr>
<tr>
<td>21.</td>
<td>Mr. N.J.Khandare</td>
<td>General Manager</td>
<td>Mahindra & Mahindra Ltd.,</td>
</tr>
<tr>
<td>22.</td>
<td>Mr. Rajeev Dave</td>
<td>Manager</td>
<td>Mahindra & Mahindra Ltd.,</td>
</tr>
<tr>
<td>S.No</td>
<td>Name</td>
<td>Designation</td>
<td>Organisation</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>23.</td>
<td>Mr. R. M. Kanitkar</td>
<td>Chief Engineer</td>
<td>Force Motors Ltd.,</td>
</tr>
<tr>
<td>24.</td>
<td>Mr. S. R. Agrhari</td>
<td>Deputy General Manager</td>
<td>Swaraj Mazda Ltd.,</td>
</tr>
<tr>
<td>25.</td>
<td>Mr. Kulbir Singh Gosal</td>
<td>Deputy Manager</td>
<td>Swaraj Mazda Ltd.,</td>
</tr>
<tr>
<td>26.</td>
<td>Mr. Pankaj Yadav</td>
<td>Manager</td>
<td>Eicher Motors Limited</td>
</tr>
<tr>
<td>27.</td>
<td>Mr. S. V. Suderson</td>
<td>Sr. Manager</td>
<td>Volvo India Pvt. Limited</td>
</tr>
</tbody>
</table>

Co-ordinator
Mr. A. Akbar Badusha
Sr. Assistant Director
Deputy Director
The Automotive Research Association of India, Pune

* At the time of formulation of AIS-052 (Revision-1).